46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Erlotinib and Concurrent Chemoradiation in Pretreated NSCLC Patients: Radiobiological Basis and Clinical Results

      other

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aims. To establish feasibility of the combination of Erlotinib and concurrent chemoradiation in pre-treated patients with locally advanced or metastatic NSCLC. Materials and Methods. Data regarding 60 consecutive patients with NSCLC previously treated with chemotherapy alone were prospectically collected. All patients started Erlotinib concurrently with chemotherapy and radiation delivered to primary tumor. These data were retrospectively analyzed (observational study). Feasibility and toxicity were the primary endpoints, with response rate and progression being the secondary ones, while survival data are reported just as exploratory analysis. The EGFR mutational status was recorded in 32% of cases and it was always wild type. Results. Compliance to the combination protocol was good. Grade 3-4 esophagitis and acute lung toxicity occurred in 2% and 8% of patients, respectively. No progressive disease was recorded in the majority of cases (65%). Median OS and PFS were 23.3 and 4.7 months, respectively. Patients not responding to chemotherapy administered prior to chemoradiation achieved an objective response rate of 53.3% and complete response in 13.3% of cases. Conclusions. The addition of Erlotinib to chemoradiation in inoperable NSCLCs is feasible with interesting efficacy profile. These preliminary results warrant further investigation in patients with locally advanced nonmetastatic NSCLC with EGFR mutations.

          Related collections

          Most cited references12

          • Record: found
          • Abstract: found
          • Article: not found

          Impact of epidermal growth factor receptor expression on survival and pattern of relapse in patients with advanced head and neck carcinoma.

          A correlative study was performed to address the impact of epidermal growth factor receptor (EGFR) overexpression on survival and pattern of failure in patients with advanced head and neck squamous cell carcinomas (HNSCCs) enrolled in a Phase III trial and randomized to receive conventional radiotherapy. The study population comprised 155 of 268 (58%) randomized patients with sufficient pretreatment biopsy specimens for immunohistochemical assay. The specimens were dewaxed and incubated after standard preparation with mouse monoclonal antibodies recognizing the extracellular domain of the EGFR molecule. The catalyzed product was visualized with 3,3'-diaminobenzidine Chromogen Kit and lightly counterstained with Mayer's hematoxylin. Quantitative EGFR immunohistochemistry (IHC) was done with SAMBA 4000 Cell Image Analysis System, without knowledge of the clinical outcome, to yield mean absorbance (MOD), staining index (SI), and quick score (QS). These EGFR IHC parameters were correlated with the T stage, N stage, combined stage grouping, and recursive partitioning analysis classes. Subsequently, the EGFR parameters were correlated with the outcome end points, i.e., overall survival (OS), disease-free survival (DFS), local-regional (LR) relapse, and distant metastasis rates. We found that HNSCCs exhibited a wide variation in EGFR expression (MOD, 0.2-66.0; SI, 0.3-97.0; QS, 0.01-69.9) with a relatively strong but nonlinear correlation between MOD and SI (r = 0.79). There was no correlation between EGFR expression and T stage, N stage, stage grouping, and recursive partitioning analysis classes (r = -0.07 to 0.17). The OS and DFS rates of patients with high EGFR-expressing HNSCCs (>median MOD) were highly significantly lower (P = 0.0006 and P = 0.0016, respectively) and the LR relapse rate was highly significantly higher (P = 0.0031) compared with those of patients with low EGFR-expressing HNSCCs. However, there was no difference in the distant metastasis rate between the two groups (P = 0.96). Significant correlations, although somewhat less robust than MOD, were also observed between SI and QS and the OS, DFS, and LR relapse rates. Multivariate analysis showed that EGFR expression was an independent determinant of survival and a robust independent predictor of LR relapse. In summary, this correlative study in a large series of patients revealed that EGFR expression, which varied considerably among HNSCCs, was a strong independent prognostic indicator for OS and DFS and a robust predictor for LR relapse but not for distant metastasis. The data suggest that EGFR IHC should be considered for selecting patients for more aggressive combined therapies or enrollment into trials targeting EGFR signaling pathways.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Radiation-induced proliferation of the human A431 squamous carcinoma cells is dependent on EGFR tyrosine phosphorylation.

            Accelerated cellular repopulation has been described as a response of tumors to fractionated irradiation in both normal tissue and tumor systems. To identify the mechanisms by which cells enhance their proliferative rate in response to clinically used doses of ionizing radiation (IR) we have studied human mammary and squamous carcinoma cells which are autocrine growth regulated by the epidermal growth factor receptor (EGFR) and its ligands, transforming growth factor-alpha and EGF. Both EGF and IR induced EGFR autophosphorylation, comparable levels of phospholipase C gamma activation as measured by inositol-1,4,5-triphosphate production, and as a consequence oscillations in cytosolic [Ca2+]. Activities of Raf-1 and mitogen-activated protein kinase (MAPK) were also stimulated by EGF and IR by Ca(2+)-dependent mechanisms. All these responses to EGF and IR were dependent upon activation of EGFR as judged by the use of the specific inhibitor of EGFR autophosphorylation, tyrphostin AG1478. Importantly, IR-induced proliferation of A431 cells was also inhibited by AG1478. This is the first report which demonstrates a link between IR-induced activation of proliferative signal transduction pathways and enhanced proliferation. We propose that accelerated repopulation of tumors whose growth is regulated by EGFR is initiated by an IR-induced EGFR activation mechanism that mimics the effects of growth factors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gefitinib radiosensitizes non-small cell lung cancer cells by suppressing cellular DNA repair capacity.

              Overexpression of the epidermal growth factor receptor (EGFR) promotes unregulated growth, inhibits apoptosis, and likely contributes to clinical radiation resistance of non-small cell lung cancer (NSCLC). Molecular blockade of EGFR signaling is an attractive therapeutic strategy for enhancing the cytotoxic effects of radiotherapy that is currently under investigation in preclinical and clinical studies. In the present study, we have investigated the mechanism by which gefitinib, a selective EGFR tyrosine kinase inhibitor, restores the radiosensitivity of NSCLC cells. Two NSCLC cell lines, A549 and H1299, were treated with 1 micromol/L gefitinib for 24 h before irradiation and then tested for clonogenic survival and capacity for repairing DNA double strand breaks (DSB). Four different repair assays were used: host cell reactivation, detection of gamma-H2AX and pNBS1 repair foci using immunofluorescence microscopy, the neutral comet assay, and pulsed-field gel electrophoresis. In clonogenic survival experiments, gefitinib had significant radiosensitizing effects on both cell lines. Results from all four DNA damage repair analyses in cultured A549 and H1299 cells showed that gefitinib had a strong inhibitory effect on the repair of DSBs after ionizing radiation. The presence of DSBs was especially prolonged during the first 2 h of repair compared with controls. Immunoblot analysis of selected repair proteins indicated that pNBS1 activation was prolonged by gefitinib correlating with its effect on pNBS1-labeled repair foci. Overall, we conclude that gefitinib enhances the radioresponse of NSCLC cells by suppressing cellular DNA repair capacity, thereby prolonging the presence of radiation-induced DSBs.
                Bookmark

                Author and article information

                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi Publishing Corporation
                2314-6133
                2314-6141
                2013
                4 August 2013
                : 2013
                : 403869
                Affiliations
                1Radiation Oncology, Campus Bio-Medico University, Via Álvaro del Portillo 21, 00128 Roma, Italy
                2Medical Oncology, Sandro Pertini Hospital, Via dei Monti Tiburtini 385, 00157 Roma, Italy
                3Scientific Directorate, IRCCS-Arcispedale Santa Maria Nuova, Viale Risorgimento 80, 42123 Reggio Emilia, Italy
                4Thoracic Surgery, Catholic University, Largo Agostino Gemelli 8, 00168 Roma, Italy
                5Deputy Scientific Director, IRCCS San Raffaele Pisana, Via della Pisana 235, 00163 Roma, Italy
                Author notes

                Academic Editor: Joanna Domagala-Kulawik

                Author information
                http://orcid.org/0000-0002-5782-7717
                http://orcid.org/0000-0003-1889-4578
                Article
                10.1155/2013/403869
                3747611
                23984359
                6ed8dccd-e65e-4f88-891c-19556902b57a
                Copyright © 2013 Sara Ramella et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 30 April 2013
                : 8 July 2013
                : 15 July 2013
                Categories
                Clinical Study

                Comments

                Comment on this article