16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Loss of large tumor suppressor 1 promotes growth and metastasis of gastric cancer cells through upregulation of the YAP signaling

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Accumulating evidence shows that large tumor suppressor 1 (LATS1) as a novel resident governor of cellular homeostasis is implicated in multiple tumorigenic properties including cell growth, apoptosis and metastasis. However, the contribution of LATS1 to gastric carcinoma (GC) remains unclear. The correlation of LATS1 expression with clinicopathologic characteristics, GC prognosis and recurrence was analyzed by immunohistochemistry, Univariate and Kaplan-Meier analysis. Functional experiments were performed to investigate biological behaviors of GC cells and underlying molecular mechanisms. Tumor growth and metastasis was assessed in vivo using orthotopic implantation GC models in severe combined immune deficiency (SCID) mice. Consequently, decreased LATS1 expression was significantly associated with the lymph node metastasis, poor prognosis and recurrence. Ectopic expression of LATS1 decreased GC cell proliferation and invasion in vitro and inhibited tumor growth and liver metastasis in vivo, but depletion of LATS1 expression restored the invasive phenotype. Further observation indicated that YAP pathway was required for LATS1-induced inhibition of cell growth and invasion, and LATS1 restrained nuclear transfer of YAP, downregulated YAP, PCNA, CTGF, MMP-2, MMP-9, Bcl-2 and CyclinD1 expression and upregulated p-YAP and Bax expression. Our findings suggest that LATS1 is a potential candidate tumor suppressor and inhibits the growth and metastasis of GC cells via downregulation of the YAP signaling.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach.

          The heterogeneity and instability of human tumors hamper straightforward identification of cancer-causing mutations through genomic approaches alone. Herein we describe a mouse model of liver cancer initiated from progenitor cells harboring defined cancer-predisposing lesions. Genome-wide analyses of tumors in this mouse model and in human hepatocellular carcinomas revealed a recurrent amplification at mouse chromosome 9qA1, the syntenic region of human chromosome 11q22. Gene-expression analyses delineated cIAP1, a known inhibitor of apoptosis, and Yap, a transcription factor, as candidate oncogenes in the amplicon. In the genetic context of their amplification, both cIAP1 and Yap accelerated tumorigenesis and were required to sustain rapid growth of amplicon-containing tumors. Furthermore, cIAP1 and Yap cooperated to promote tumorigenesis. Our results establish a tractable model of liver cancer, identify two oncogenes that cooperate by virtue of their coamplification in the same genomic locus, and suggest an efficient strategy for the annotation of human cancer genes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identifying tumor suppressors in genetic mosaics: the Drosophila lats gene encodes a putative protein kinase.

            We have identified recessive overproliferation mutations by screening and examining clones of mutant cells in genetic mosaics of the fruitfly Drosophila melanogaster. This type of screen provides a powerful approach for identifying and studying potential tumor suppressors. One of the identified genes, lats, has been cloned and encodes a putative protein kinase that shares high levels of sequence similarity with three proteins in budding yeast and Neurospora that are involved in regulation of the cell cycle and growth. Mutations in lats cause dramatic overproliferation phenotypes and various developmental defects in both mosaic animals and homozygous mutants.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The emerging role of the hippo pathway in cell contact inhibition, organ size control, and cancer development in mammals.

              The Hippo pathway defined originally in Drosophila melanogaster is conserved in mammals. The fly core components Hippo, Sav, Wts, and Mats are conserved in mammals as Mst1/2, WW45, LATS1/2, and Mob1. The pathway impinges on transcriptional coactivator Yorkie in fly and YAP in mammals to coordinate cell proliferation and apoptosis. Several recent publications establish that the pathway is one major conserved mechanism governing cell contact inhibition, organ size control, and cancer development. This advance opens new vistas in exploring fundamental mechanisms in cell and developmental biology and offers potential targets to interfere with cancer development.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                29 March 2016
                22 February 2016
                : 7
                : 13
                : 16180-16193
                Affiliations
                1 Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai 200233, China
                2 Department of Gerontology, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai 200233, China
                Author notes
                Correspondence to: Jin-Shui Zhu, zhujs1803@ 123456163.com
                Article
                7568
                10.18632/oncotarget.7568
                4941306
                26921249
                6ef33585-3b8e-4f4e-a096-64d56242b228
                Copyright: © 2016 Zhang et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 28 June 2015
                : 5 January 2016
                Categories
                Research Paper

                Oncology & Radiotherapy
                large tumor suppressor 1,yap,metastasis,prognosis,gastric cancer
                Oncology & Radiotherapy
                large tumor suppressor 1, yap, metastasis, prognosis, gastric cancer

                Comments

                Comment on this article