32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      DNA from extinct giant lemurs links archaeolemurids to extant indriids

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Although today 15% of living primates are endemic to Madagascar, their diversity was even greater in the recent past since dozens of extinct species have been recovered from Holocene excavation sites. Among them were the so-called "giant lemurs" some of which weighed up to 160 kg. Although extensively studied, the phylogenetic relationships between extinct and extant lemurs are still difficult to decipher, mainly due to morphological specializations that reflect ecology more than phylogeny, resulting in rampant homoplasy.

          Results

          Ancient DNA recovered from subfossils recently supported a sister relationship between giant "sloth" lemurs and extant indriids and helped to revise the phylogenetic position of Megaladapis edwardsi among lemuriformes, but several taxa – such as the Archaeolemuridae – still await analysis. We therefore used ancient DNA technology to address the phylogenetic status of the two archaeolemurid genera ( Archaeolemur and Hadropithecus). Despite poor DNA preservation conditions in subtropical environments, we managed to recover 94- to 539-bp sequences for two mitochondrial genes among 5 subfossil samples.

          Conclusion

          This new sequence information provides evidence for the proximity of Archaeolemur and Hadropithecus to extant indriids, in agreement with earlier assessments of their taxonomic status (Primates, Indrioidea) and in contrast to recent suggestions of a closer relationship to the Lemuridae made on the basis of analyses of dental developmental and postcranial characters. These data provide new insights into the evolution of the locomotor apparatus among lemurids and indriids.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          MRBAYES: Bayesian inference of phylogenetic trees.

          The program MRBAYES performs Bayesian inference of phylogeny using a variant of Markov chain Monte Carlo. MRBAYES, including the source code, documentation, sample data files, and an executable, is available at http://brahms.biology.rochester.edu/software.html.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea.

            A maximum likelihood method for inferring evolutionary trees from DNA sequence data was developed by Felsenstein (1981). In evaluating the extent to which the maximum likelihood tree is a significantly better representation of the true tree, it is important to estimate the variance of the difference between log likelihood of different tree topologies. Bootstrap resampling can be used for this purpose (Hasegawa et al. 1988; Hasegawa and Kishino 1989), but it imposes a great computation burden. To overcome this difficulty, we developed a new method for estimating the variance by expressing it explicitly. The method was applied to DNA sequence data from primates in order to evaluate the maximum likelihood branching order among Hominoidea. It was shown that, although the orangutan is convincingly placed as an outgroup of a human and African apes clade, the branching order among human, chimpanzee, and gorilla cannot be determined confidently from the DNA sequence data presently available when the evolutionary rate constancy is not assumed.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Ancient DNA: do it right or not at all.

                Bookmark

                Author and article information

                Journal
                BMC Evol Biol
                BMC Evolutionary Biology
                BioMed Central
                1471-2148
                2008
                28 April 2008
                : 8
                : 121
                Affiliations
                [1 ]Paléogénétique et Evolution Moléculaire, Université de Lyon, Institut de Génomique Fonctionnelle de Lyon, Institut Fédératif Biosciences Gerland Lyon Sud, Université Lyon 1, CNRS, INRA, Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon Cédex 07, France
                [2 ]CNRS UMR 5023, Laboratoire d'Ecologie des Hydrosystèmes Fluviaux, Université Claude Bernard Lyon 1, 6 rue R. Dubois, Bat. Darwin-C, F-69622 Villeurbanne Cédex, France
                [3 ]Department of Anthropology, 240 Hicks Way, University of Massachusetts, Amherst, MA 01003, USA
                Article
                1471-2148-8-121
                10.1186/1471-2148-8-121
                2386821
                18442367
                6ef60c4e-7380-45c7-838e-25afeedfc2ee
                Copyright © 2008 Orlando et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 11 December 2007
                : 28 April 2008
                Categories
                Research Article

                Evolutionary Biology
                Evolutionary Biology

                Comments

                Comment on this article