15
views
0
recommends
+1 Recommend
2 collections
    0
    shares

          The flagship journal of the Society for Endocrinology. Learn more

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Association between alendronate and atypical femur fractures: a meta-analysis

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Alendronate (ALN) is a commonly used drug for the treatment of osteoporosis. Atypical femur fractures (AFFs) have been associated with long-term use of ALN and have recently become the subject of considerable attention as ALN use increases. This meta-analysis aimed to determine the relationship between ALN and AFF. The Embase, PubMed, and Cochrane library databases were searched for relevant studies published before November 6, 2014. Studies clearly reporting the relationship between ALN and AFF were selected for our analysis. From these results, the relationship between ALN and AFF was analyzed. Weighted mean differences were calculated using a random-effects model. Five studies were included in this meta-analysis. The results revealed that the use of ALN will not increase the risk of AFF in short term ( P>0.05), but there will be a risk of AFF ( P<0.05) with long-term (>5 years) use of ALN. These findings indicate that long-term use of ALN is a risk factor for AFF and that more attention should be paid to the clinical applications of ALN.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Atypical subtrochanteric and diaphyseal femoral fractures: second report of a task force of the American Society for Bone and Mineral Research.

          Bisphosphonates (BPs) and denosumab reduce the risk of spine and nonspine fractures. Atypical femur fractures (AFFs) located in the subtrochanteric region and diaphysis of the femur have been reported in patients taking BPs and in patients on denosumab, but they also occur in patients with no exposure to these drugs. In this report, we review studies on the epidemiology, pathogenesis, and medical management of AFFs, published since 2010. This newer evidence suggests that AFFs are stress or insufficiency fractures. The original case definition was revised to highlight radiographic features that distinguish AFFs from ordinary osteoporotic femoral diaphyseal fractures and to provide guidance on the importance of their transverse orientation. The requirement that fractures be noncomminuted was relaxed to include minimal comminution. The periosteal stress reaction at the fracture site was changed from a minor to a major feature. The association with specific diseases and drug exposures was removed from the minor features, because it was considered that these associations should be sought rather than be included in the case definition. Studies with radiographic review consistently report significant associations between AFFs and BP use, although the strength of associations and magnitude of effect vary. Although the relative risk of patients with AFFs taking BPs is high, the absolute risk of AFFs in patients on BPs is low, ranging from 3.2 to 50 cases per 100,000 person-years. However, long-term use may be associated with higher risk (∼100 per 100,000 person-years). BPs localize in areas that are developing stress fractures; suppression of targeted intracortical remodeling at the site of an AFF could impair the processes by which stress fractures normally heal. When BPs are stopped, risk of an AFF may decline. Lower limb geometry and Asian ethnicity may contribute to the risk of AFFs. There is inconsistent evidence that teriparatide may advance healing of AFFs.
            • Record: found
            • Abstract: found
            • Article: not found

            Severely suppressed bone turnover: a potential complication of alendronate therapy.

            Alendronate, an inhibitor of bone resorption, is widely used in osteoporosis treatment. However, concerns have been raised about potential oversuppression of bone turnover during long-term use. We report on nine patients who sustained spontaneous nonspinal fractures while on alendronate therapy, six of whom displayed either delayed or absent fracture healing for 3 months to 2 yr during therapy. Histomorphometric analysis of the cancellous bone showed markedly suppressed bone formation, with reduced or absent osteoblastic surface in most patients. Osteoclastic surface was low or low-normal in eight patients, and eroded surface was decreased in four. Matrix synthesis was markedly diminished, with absence of double-tetracycline label and absent or reduced single-tetracycline label in all patients. The same trend was seen in the intracortical and endocortical surfaces. Our findings raise the possibility that severe suppression of bone turnover may develop during long-term alendronate therapy, resulting in increased susceptibility to, and delayed healing of, nonspinal fractures. Although coadministration of estrogen or glucocorticoids appears to be a predisposing factor, this apparent complication can also occur with monotherapy. Our observations emphasize the need for increased awareness and monitoring for the potential development of excessive suppression of bone turnover during long-term alendronate therapy.
              • Record: found
              • Abstract: found
              • Article: not found

              Effects of continuing or stopping alendronate after 5 years of treatment: the Fracture Intervention Trial Long-term Extension (FLEX): a randomized trial.

              The optimal duration of treatment of women with postmenopausal osteoporosis is uncertain. To compare the effects of discontinuing alendronate treatment after 5 years vs continuing for 10 years. Randomized, double-blind trial conducted at 10 US clinical centers that participated in the Fracture Intervention Trial (FIT). One thousand ninety-nine postmenopausal women who had been randomized to alendronate in FIT, with a mean of 5 years of prior alendronate treatment. Randomization to alendronate, 5 mg/d (n = 329) or 10 mg/d (n = 333), or placebo (n = 437) for 5 years (1998-2003). The primary outcome measure was total hip bone mineral density (BMD); secondary measures were BMD at other sites and biochemical markers of bone remodeling. An exploratory outcome measure was fracture incidence. Compared with continuing alendronate, switching to placebo for 5 years resulted in declines in BMD at the total hip (-2.4%; 95% confidence interval [CI], -2.9% to -1.8%; P<.001) and spine (-3.7%; 95% CI, -4.5% to -3.0%; P<.001), but mean levels remained at or above pretreatment levels 10 years earlier. Similarly, those discontinuing alendronate had increased serum markers of bone turnover compared with continuing alendronate: 55.6% (P<.001) for C-telopeptide of type 1 collagen, 59.5% (P < .001) for serum n = propeptide of type 1 collagen, and 28.1% (P<.001) for bone-specific alkaline phosphatase, but after 5 years without therapy, bone marker levels remained somewhat below pretreatment levels 10 years earlier. After 5 years, the cumulative risk of nonvertebral fractures (RR, 1.00; 95% CI, 0.76-1.32) was not significantly different between those continuing (19%) and discontinuing (18.9%) alendronate. Among those who continued, there was a significantly lower risk of clinically recognized vertebral fractures (5.3% for placebo and 2.4% for alendronate; RR, 0.45; 95% CI, 0.24-0.85) but no significant reduction in morphometric vertebral fractures (11.3% for placebo and 9.8% for alendronate; RR, 0.86; 95% CI, 0.60-1.22). A small sample of 18 transilial bone biopsies did not show any qualitative abnormalities, with bone turnover (double labeling) seen in all specimens. Women who discontinued alendronate after 5 years showed a moderate decline in BMD and a gradual rise in biochemical markers but no higher fracture risk other than for clinical vertebral fractures compared with those who continued alendronate. These results suggest that for many women, discontinuation of alendronate for up to 5 years does not appear to significantly increase fracture risk. However, women at very high risk of clinical vertebral fractures may benefit by continuing beyond 5 years. clinicaltrials.gov Identifier: NCT 00398931.

                Author and article information

                Journal
                Endocr Connect
                Endocr Connect
                EC
                Endocrine Connections
                Bioscientifica Ltd (Bristol )
                2049-3614
                4 February 2015
                1 March 2015
                : 4
                : 1
                : 58-64
                Affiliations
                [1]Department of Endocrinology , Shanghai Tenth People's Hospital, Tongji University School of Medicine , 301 Yanchang Middle Road, Shanghai, 200072, China
                [1 ]Department of Internal Medicine , Shanghai Dachang Hospital , Shanghai, 200442, China
                [2 ]Department of Paediatrics , Ningbo Women and Children's Hospital , Ningbo, Zhejiang Province, 315012, China
                Author notes
                Correspondence should be addressed to H Li Email: lihong_endo@ 123456tongji.edu.cn
                Article
                EC140120
                10.1530/EC-14-0120
                5402924
                25538222
                6ef66d08-dcde-499a-a8f9-388568096716
                © 2015 The authors

                This work is licensed under a Creative Commons Attribution 3.0 Unported License

                History
                : 16 December 2014
                : 22 December 2014
                Categories
                Research

                alendronate,atypical femur fractures,meta-analysis,osteoporosis

                Comments

                Comment on this article

                Related Documents Log