7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Some Remarks about the Complexity of Epidemics Management

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent outbreaks of Ebola, N1H1 and other infectious diseases have shown that the assumptions underlying the established theory of epidemics management are too idealistic. For an improvement of procedures and organizations involved in fighting epidemics, extended models of epidemics management are required. The necessary extensions consist in a representation of the management loop and the potential frictions influencing the loop. The effects of the non-deterministic frictions can be taken into account by including the measures of robustness and risk in the assessment of management options. Thus, besides of the increased structural complexity resulting from the model extensions, the computational complexity of the task of epidemics management - interpreted as an optimization problem - is increased as well. This is a serious obstacle for analyzing the model and may require an additional pre-processing enabling a simplification of the analysis process. The paper closes with an outlook discussing some forthcoming problems.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Modelling the influence of human behaviour on the spread of infectious diseases: a review.

          Human behaviour plays an important role in the spread of infectious diseases, and understanding the influence of behaviour on the spread of diseases can be key to improving control efforts. While behavioural responses to the spread of a disease have often been reported anecdotally, there has been relatively little systematic investigation into how behavioural changes can affect disease dynamics. Mathematical models for the spread of infectious diseases are an important tool for investigating and quantifying such effects, not least because the spread of a disease among humans is not amenable to direct experimental study. Here, we review recent efforts to incorporate human behaviour into disease models, and propose that such models can be broadly classified according to the type and source of information which individuals are assumed to base their behaviour on, and according to the assumed effects of such behaviour. We highlight recent advances as well as gaps in our understanding of the interplay between infectious disease dynamics and human behaviour, and suggest what kind of data taking efforts would be helpful in filling these gaps.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ecological and immunological determinants of dengue epidemics.

            The management of infectious diseases is an increasingly important public health issue, the effective implementation of which is often complicated by difficulties in teasing apart the relative roles of extrinsic and intrinsic factors influencing transmission. Dengue, a vector-borne strain polymorphic disease, is one such infection where transmission dynamics are affected by environmental variables as well as immune-mediated serotype interactions. To understand how alternative hypotheses concerning dengue infection and transmission may explain observed multiannual cycles in disease incidence, we adopt a theoretical approach that combines both ecological and immunological mechanisms. We demonstrate that, contrary to perceived wisdom, patterns generated solely by antibody-dependent enhancement or heterogeneity in virus virulence are not consistent with serotype-specific notification data in important ways. Furthermore, to generate epidemics with the characteristic signatures observed in data, we find that a combination of seasonal variation in vector demography and, crucially, a short-lived period of cross-immunity is sufficient. We then show how understanding the persistence and eradication of dengue serotypes critically depends on the alternative assumed mechanisms.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Heterogeneity and Network Structure in the Dynamics of Diffusion: Comparing Agent-Based and Differential Equation Models

                Bookmark

                Author and article information

                Journal
                2017-05-07
                Article
                1705.02612
                6ef720d0-5086-4b44-8b50-c4329be0d868

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                92C60, 93E99
                physics.soc-ph q-bio.PE q-bio.QM

                Evolutionary Biology,General physics,Quantitative & Systems biology
                Evolutionary Biology, General physics, Quantitative & Systems biology

                Comments

                Comment on this article