11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Insulin-Like Growth Factor Binding Protein-3 (IGFBP-3): Unraveling the Role in Mediating IGF-Independent Effects Within the Cell

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Insulin-like growth factor (IGF) binding protein-3 (IGFBP-3), one of the six members of the IGFBP family, is a key protein in the IGF pathway. IGFBP-3 can function in an IGF-dependent as well as in an IGF-independent manner. The IGF-dependent roles of IGFBP-3 include its endocrine role in the delivery of IGFs from the site of synthesis to the target cells that possess IGF receptors and the activation of associated downstream signaling. IGF-independent role of IGFBP-3 include its interactions with the proteins of the extracellular matrix and the proteins of the plasma membrane, its translocation through the plasma membrane into the cytoplasm and into the nucleus. The C-terminal domain of IGFBP-3 has the ability to undergo cell penetration therefore, generating a short 8-22-mer C-terminal domain peptides that can be conjugated to drugs or genes for effective intracellular delivery. This has opened doors for biotechnological applications of the molecule in molecular medicine. The aim of this this review is to summarize the complex roles of IGFBP-3 within the cell, including its mechanisms of cellular uptake and its translocation into the nucleus, various molecules with which it is capable of interacting, and its ability to regulate IGF-independent cell growth, survival and apoptosis. This would pave way into understanding the modus operandi of IGFBP-3 in regulating IGF-independent processes and its pleiotropic ability to bind with potential partners thus regulating several cellular functions implicated in metabolic diseases, including cancer.

          Related collections

          Most cited references151

          • Record: found
          • Abstract: found
          • Article: not found

          Classical nuclear localization signals: definition, function, and interaction with importin alpha.

          The best understood system for the transport of macromolecules between the cytoplasm and the nucleus is the classical nuclear import pathway. In this pathway, a protein containing a classical basic nuclear localization signal (NLS) is imported by a heterodimeric import receptor consisting of the beta-karyopherin importin beta, which mediates interactions with the nuclear pore complex, and the adaptor protein importin alpha, which directly binds the classical NLS. Here we review recent studies that have advanced our understanding of this pathway and also take a bioinformatics approach to analyze the likely prevalence of this system in vivo. Finally, we describe how a predicted NLS within a protein of interest can be confirmed experimentally to be functionally important.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Mechanisms of Cellular Uptake of Cell-Penetrating Peptides

            Recently, much attention has been given to the problem of drug delivery through the cell-membrane in order to treat and manage several diseases. The discovery of cell penetrating peptides (CPPs) represents a major breakthrough for the transport of large-cargo molecules that may be useful in clinical applications. CPPs are rich in basic amino acids such as arginine and lysine and are able to translocate over membranes and gain access to the cell interior. They can deliver large-cargo molecules, such as oligonucleotides, into cells. Endocytosis and direct penetration have been suggested as the two major uptake mechanisms, a subject still under debate. Unresolved questions include the detailed molecular uptake mechanism(s), reasons for cell toxicity, and the delivery efficiency of CPPs for different cargoes. Here, we give a review focused on uptake mechanisms used by CPPs for membrane translocation and certain experimental factors that affect the mechanism(s).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Humanin peptide suppresses apoptosis by interfering with Bax activation.

              Bax (Bcl2-associated X protein) is an apoptosis-inducing protein that participates in cell death during normal development and in various diseases. Bax resides in an inactive state in the cytosol of many cells. In response to death stimuli, Bax protein undergoes conformational changes that expose membrane-targeting domains, resulting in its translocation to mitochondrial membranes, where Bax inserts and causes release of cytochrome c and other apoptogenic proteins. It is unknown what controls conversion of Bax from the inactive to active conformation. Here we show that Bax interacts with humanin (HN), an anti-apoptotic peptide of 24 amino acids encoded in mammalian genomes. HN prevents the translocation of Bax from cytosol to mitochondria. Conversely, reducing HN expression by small interfering RNAs sensitizes cells to Bax and increases Bax translocation to membranes. HN peptides also block Bax association with isolated mitochondria, and suppress cytochrome c release in vitro. Notably, the mitochondrial genome contains an identical open reading frame, and the mitochondrial version of HN can also bind and suppress Bax. We speculate therefore that HN arose from mitochondria and transferred to the nuclear genome, providing a mechanism for protecting these organelles from Bax.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Dev Biol
                Front Cell Dev Biol
                Front. Cell Dev. Biol.
                Frontiers in Cell and Developmental Biology
                Frontiers Media S.A.
                2296-634X
                05 May 2020
                2020
                : 8
                : 286
                Affiliations
                [1] 1VastCon Inc. , Winnipeg, MB, Canada
                [2] 2Department of Biology, University of Winnipeg , Winnipeg, MB, Canada
                [3] 3Research Institute of Oncology and Hematology, CancerCare Manitoba , Winnipeg, MB, Canada
                [4] 4Department of Surgery, University of Manitoba , Winnipeg, MB, Canada
                Author notes

                Edited by: Venkaiah Betapudi, United States Department of Homeland Security, United States

                Reviewed by: Claire Perks, University of Bristol, United Kingdom; Jeff M. P. Holly, University of Bristol, United Kingdom

                *Correspondence: Shailly Varma Shrivastav, shailly@ 123456vastcon.ca

                This article was submitted to Cellular Biochemistry, a section of the journal Frontiers in Cell and Developmental Biology

                Article
                10.3389/fcell.2020.00286
                7232603
                32478064
                6ef82c35-2c9d-4ef1-a427-da02181e9b64
                Copyright © 2020 Varma Shrivastav, Bhardwaj, Pathak and Shrivastav.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 12 January 2020
                : 02 April 2020
                Page count
                Figures: 4, Tables: 0, Equations: 0, References: 160, Pages: 18, Words: 0
                Categories
                Cell and Developmental Biology
                Review

                cell survival,apoptosis,igf-independent role,insulin-like growth factor,nuclear binding partners of igfbp-3,igfbp-3 interacting proteins,cell penetration peptides,insulin-like growth factor binding protein-3

                Comments

                Comment on this article