+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: not found

      Calcium transients in subcompartments of the leech Retzius neuron as induced by single action potentials.

      Journal of neurobiology

      Action Potentials, drug effects, physiology, Agatoxins, Animals, Axons, Calcium, metabolism, Calcium Channel Blockers, pharmacology, Calcium Channels, Cell Nucleus, Cytoplasm, Dendrites, Gallopamil, Leeches, Neurons, Nifedipine, Spider Venoms

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Regional Ca(2+) influx into neurons plays an essential role for fast signal processing, yet it is little understood. We have investigated intracellular Ca(2+) transients induced by a single action potential (AP) in Retzius neurons in situ of isolated ganglia of the leech Hirudo medicinalis using confocal laser scanning microscopy in the cell body, in different axonal branches, and in dendrites. In the cell body, a single AP induced a Ca(2+) transient in submembrane regions, while in central regions no fluorescence change was detected. Burst activity evoked a much larger Ca(2+) influx, which elicited Ca(2+) signals in central somatic regions, including the cell nucleus. A single AP induced a Ca(2+) transient in distal branches of the axon and in dendrites that was significantly larger than in the proximal axon and in the cell body (p <.05), and the recovery of the Ca(2+) transient was significantly faster in axonal branches than in dendrites (p <.01). The AP-induced Ca(2+) transient was inhibited by Co(2+) (2 mM). The P/Q-type Ca(2+) channel blocker omega-agatoxin TK (500 nM) and the L-type Ca(2+) channel blocker nifedipine (20 microM) had no effect on the Ca(2+) transient, whereas the L-type Ca(2+) channel blocker methoxyverapamil (D600, 0.5-1 mM) irreversibly reduced the Ca(2+) transient by 37% in axons and by 42% in dendrites. Depletion of intracellular Ca(2+) stores following inhibition of endoplasmic Ca(2+)-ATPases by cyclopiazonic acid (10 microM) decreased the AP-induced Ca(2+) transient in the dendrites by 21% (p <.01), but not in axons, and increased the Ca(2+) recovery time constant (tau) in the axonal branches by 129% (p <.01), but not in dendrites. The results indicate that an AP evokes a voltage-gated Ca(2+) influx into all subcompartments of the Retzius neuron, where it produces a Ca(2+) signal of different size and/or kinetics. This may contribute to the modulation of electrical excitation and propagation of APs, and to different modes of synaptic and nonsynaptic processes.

          Related collections

          Author and article information



          Comment on this article