15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      STK33 participates to HSP90-supported angiogenic program in hypoxic tumors by regulating HIF-1α/VEGF signaling pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lately, the HSP90 client serine/threonine kinase STK33 emerged to be required by cancer cells for their viability and proliferation. However, its mechanistic contribution to carcinogenesis is not clearly understood. Here we report that elevated STK33 expression correlates with advanced stages of human pancreatic and colorectal carcinomas. Impaired proliferation and augmented apoptosis associated with genetic abrogation of STK33 were paralleled by decreased vascularization in tumor xenografts. In line with this, ectopic STK33 not only promoted tumor growth after pharmacologic inhibition of HSP90 using structurally divergent small molecules currently in clinical development, but also restored blood vessel formation in vivo. Mechanistic studies demonstrated that HSP90-stabilized STK33 interacts with and regulates hypoxia-driven accumulation and activation of HIF-1α as well as secretion of VEGF-A in hypoxic cancer cells. In addition, our study reveals a putative cooperation between STK33 and other HSP90 client protein kinases involved in molecular and cellular events through which cancer cells ensure their survival by securing the oxygen and nutrient supply. Altogether, our findings indicate that STK33 interferes with signals from hypoxia and HSP90 to promote tumor angiogenesis and tumor growth.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells.

          An alternative to therapeutic targeting of oncogenes is to perform "synthetic lethality" screens for genes that are essential only in the context of specific cancer-causing mutations. We used high-throughput RNA interference (RNAi) to identify synthetic lethal interactions in cancer cells harboring mutant KRAS, the most commonly mutated human oncogene. We find that cells that are dependent on mutant KRAS exhibit sensitivity to suppression of the serine/threonine kinase STK33 irrespective of tissue origin, whereas STK33 is not required by KRAS-independent cells. STK33 promotes cancer cell viability in a kinase activity-dependent manner by regulating the suppression of mitochondrial apoptosis mediated through S6K1-induced inactivation of the death agonist BAD selectively in mutant KRAS-dependent cells. These observations identify STK33 as a target for treatment of mutant KRAS-driven cancers and demonstrate the potential of RNAi screens for discovering functional dependencies created by oncogenic mutations that may enable therapeutic intervention for cancers with "undruggable" genetic alterations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hsp90 regulates a von Hippel Lindau-independent hypoxia-inducible factor-1 alpha-degradative pathway.

            HIF-1 alpha is a normally labile proangiogenic transcription factor that is stabilized and activated in hypoxia. Although the von Hippel Lindau (VHL) gene product, the ubiquitin ligase responsible for regulating HIF-1 alpha protein levels, efficiently targets HIF-1 alpha for rapid proteasome-dependent degradation under normoxia, HIF-1 alpha is resistant to the destabilizing effects of VHL under hypoxia. HIF-1 alpha also associates with the molecular chaperone Hsp90. To examine the role of Hsp90 in HIF-1 alpha function, we used renal carcinoma cell (RCC) lines that lack functional VHL and express stable HIF-1 alpha protein under normoxia. Geldanamycin (GA), an Hsp90 antagonist, promoted efficient ubiquitination and proteasome-mediated degradation of HIF-1 alpha in RCC in both normoxia and hypoxia. Furthermore, HIF-1 alpha point mutations that block VHL association did not protect HIF-1 alpha from GA-induced destabilization. Hsp90 antagonists also inhibited HIF-1 alpha transcriptional activity and dramatically reduced both hypoxia-induced accumulation of VEGF mRNA and hypoxia-dependent angiogenic activity. These findings demonstrate that disruption of Hsp90 function 1) promotes HIF-1 alpha degradation via a novel, oxygen-independent E3 ubiquitin ligase and 2) diminishes HIF-1 alpha transcriptional activity. Existence of an Hsp90-dependent pathway for elimination of HIF-1 alpha predicts that Hsp90 antagonists may be hypoxic cell sensitizers and possess antiangiogenic activity in vivo, thus extending the utility of these drugs as therapeutic anticancer agents.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Histone deacetylases induce angiogenesis by negative regulation of tumor suppressor genes.

              Low oxygen tension influences tumor progression by enhancing angiogenesis; and histone deacetylases (HDAC) are implicated in alteration of chromatin assembly and tumorigenesis. Here we show induction of HDAC under hypoxia and elucidate a role for HDAC in the regulation of hypoxia-induced angiogenesis. Overexpressed wild-type HDAC1 downregulated expression of p53 and von Hippel-Lindau tumor suppressor genes and stimulated angiogenesis of human endothelial cells. A specific HDAC inhibitor, trichostatin A (TSA), upregulated p53 and von Hippel-Lindau expression and downregulated hypoxia-inducible factor-1alpha and vascular endothelial growth factor. TSA also blocked angiogenesis in vitro and in vivo. TSA specifically inhibited hypoxia-induced angiogenesis in the Lewis lung carcinoma model. These results indicate that hypoxia enhances HDAC function and that HDAC is closely involved in angiogenesis through suppression of hypoxia-responsive tumor suppressor genes.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                29 September 2017
                24 August 2017
                : 8
                : 44
                : 77474-77488
                Affiliations
                1 Center for Internal Medicine I, Ulm University, Ulm, Germany
                2 Department of Gastroenterology and Hepatology, Zhongda Hospital, Southeast University, Nanjing, China
                3 Institute of Pathology and Molecular Pathology, Bundeswehrkrankenhaus Ulm, Ulm, Germany
                4 Gerhard-Domagk-Institute of Pathology, University of Münster, Münster, Germany
                5 Center for Internal Medicine III, Ulm University, Ulm, Germany
                6 Department of Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Institute, New York, NY, USA
                7 Institute of Pharmacology of Natural Products & Clinical Pharmacology, Ulm University, Ulm, Germany
                Author notes
                Correspondence to: Ninel Azoitei, ninel.azoitei@ 123456uni-ulm.de
                Article
                20535
                10.18632/oncotarget.20535
                5652794
                29100402
                6f14265e-3e7d-43ed-a66f-0af2faa50ae5
                Copyright: © 2017 Liu et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 13 May 2017
                : 31 July 2017
                Categories
                Research Paper

                Oncology & Radiotherapy
                tumor angiogenesis,hypoxia,vegf-a,stk33,hif-1α
                Oncology & Radiotherapy
                tumor angiogenesis, hypoxia, vegf-a, stk33, hif-1α

                Comments

                Comment on this article