33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Spinophilin directs Protein Phosphatase 1 specificity by blocking substrate binding sites

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The serine/threonine Protein Phosphatase 1 (PP1) dephosphorylates hundreds of key biological targets. PP1 associates with ≥200 regulatory proteins to form highly specific holoenzymes. These regulatory proteins target PP1 to its point of action within the cell and prime its enzymatic specificity for particular substrates. However, how they direct PP1’s specificity is not understood. Here we show that spinophilin, a neuronal PP1 regulator, is entirely unstructured in its unbound form and binds PP1, through a folding-upon-binding mechanism, in an elongated fashion, blocking one of PP1’s three putative substrate binding sites, without altering its active site. This mode of binding is sufficient for spinophilin to restrict PP1’s activity toward a model substrate in vitro, without affecting its ability to dephosphorylate its neuronal substrate GluR1. Thus, our work provides the molecular basis for the ability of spinophilin to dictate PP1 substrate specificity.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          The atomic structure of protein-protein recognition sites.

          The non-covalent assembly of proteins that fold separately is central to many biological processes, and differs from the permanent macromolecular assembly of protein subunits in oligomeric proteins. We performed an analysis of the atomic structure of the recognition sites seen in 75 protein-protein complexes of known three-dimensional structure: 24 protease-inhibitor, 19 antibody-antigen and 32 other complexes, including nine enzyme-inhibitor and 11 that are involved in signal transduction.The size of the recognition site is related to the conformational changes that occur upon association. Of the 75 complexes, 52 have "standard-size" interfaces in which the total area buried by the components in the recognition site is 1600 (+/-400) A2. In these complexes, association involves only small changes of conformation. Twenty complexes have "large" interfaces burying 2000 to 4660 A2, and large conformational changes are seen to occur in those cases where we can compare the structure of complexed and free components. The average interface has approximately the same non-polar character as the protein surface as a whole, and carries somewhat fewer charged groups. However, some interfaces are significantly more polar and others more non-polar than the average. Of the atoms that lose accessibility upon association, half make contacts across the interface and one-third become fully inaccessible to the solvent. In the latter case, the Voronoi volume was calculated and compared with that of atoms buried inside proteins. The ratio of the two volumes was 1.01 (+/-0.03) in all but 11 complexes, which shows that atoms buried at protein-protein interfaces are close-packed like the protein interior. This conclusion could be extended to the majority of interface atoms by including solvent positions determined in high-resolution X-ray structures in the calculation of Voronoi volumes. Thus, water molecules contribute to the close-packing of atoms that insure complementarity between the two protein surfaces, as well as providing polar interactions between the two proteins. Copyright 1999 Academic Press.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Protein phosphatase 1--targeted in many directions.

            Protein phosphatase 1 (PP1) is a major eukaryotic protein serine/threonine phosphatase that regulates an enormous variety of cellular functions through the interaction of its catalytic subunit (PP1c) with over fifty different established or putative regulatory subunits. Most of these target PP1c to specific subcellular locations and interact with a small hydrophobic groove on the surface of PP1c through a short conserved binding motif--the RVxF motif--which is often preceded by further basic residues. Weaker interactions may subsequently enhance binding and modulate PP1 activity/specificity in a variety of ways. Several putative targeting subunits do not possess an RVxF motif but nevertheless interact with the same region of PP1c. In addition, several 'modulator' proteins bind to PP1c but do not possess a domain targeting them to a specific location. Most are potent inhibitors of PP1c and possess at least two sites for interaction with PP1c, one of which is identical or similar to the RVxF motif. Regulation of PP1c in response to extracellular and intracellular signals occurs mostly through changes in the levels, conformation or phosphorylation status of targeting subunits. Understanding of the mode of action of PP1c complexes may facilitate development of drugs that target particular PP1c complexes and thereby modulate the phosphorylation state of a very limited subset of proteins.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Functional diversity of protein phosphatase-1, a cellular economizer and reset button.

              The protein serine/threonine phosphatase protein phosphatase-1 (PP1) is a ubiquitous eukaryotic enzyme that regulates a variety of cellular processes through the dephosphorylation of dozens of substrates. This multifunctionality of PP1 relies on its association with a host of function-specific targetting and substrate-specifying proteins. In this review we discuss how PP1 affects the biochemistry and physiology of eukaryotic cells. The picture of PP1 that emerges from this analysis is that of a "green" enzyme that promotes the rational use of energy, the recycling of protein factors, and a reversal of the cell to a basal and/or energy-conserving state. Thus PP1 promotes a shift to the more energy-efficient fuels when nutrients are abundant and stimulates the storage of energy in the form of glycogen. PP1 also enables the relaxation of actomyosin fibers, the return to basal patterns of protein synthesis, and the recycling of transcription and splicing factors. In addition, PP1 plays a key role in the recovery from stress but promotes apoptosis when cells are damaged beyond repair. Furthermore, PP1 downregulates ion pumps and transporters in various tissues and ion channels that are involved in the excitation of neurons. Finally, PP1 promotes the exit from mitosis and maintains cells in the G1 or G2 phases of the cell cycle.
                Bookmark

                Author and article information

                Journal
                101186374
                31761
                Nat Struct Mol Biol
                Nature structural & molecular biology
                1545-9993
                1545-9985
                9 August 2010
                21 March 2010
                April 2010
                1 October 2010
                : 17
                : 4
                : 459-464
                Affiliations
                [1 ] Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI, 02912
                [2 ] Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02912
                [3 ] Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06508
                Author notes
                Correspondence should be addressed to W.P. ( wolfgang_peti@ 123456brown.edu )
                Article
                nihpa223182
                10.1038/nsmb.1786
                2924587
                20305656
                6f2571a2-c18a-411a-ad42-cccf27561411

                Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Funding
                Funded by: National Institute of Neurological Disorders and Stroke : NINDS
                Award ID: R01 NS056128-04 ||NS
                Funded by: National Institute of Neurological Disorders and Stroke : NINDS
                Award ID: R01 NS056128-03 ||NS
                Funded by: National Institute of Neurological Disorders and Stroke : NINDS
                Award ID: R01 NS056128-02S1 ||NS
                Funded by: National Institute of Neurological Disorders and Stroke : NINDS
                Award ID: R01 NS056128-02 ||NS
                Funded by: National Institute of Neurological Disorders and Stroke : NINDS
                Award ID: R01 NS056128-01A2 ||NS
                Categories
                Article

                Molecular biology
                spinophilin,protein phosphatase 1,pp1,serine/threonine signaling,intrinsically unstructured protein

                Comments

                Comment on this article