10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Taste and smell words form an affectively loaded and emotionally flexible part of the English lexicon

      Language, Cognition and Neuroscience
      Informa UK Limited

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Perceptual symbol systems.

          Prior to the twentieth century, theories of knowledge were inherently perceptual. Since then, developments in logic, statistics, and programming languages have inspired amodal theories that rest on principles fundamentally different from those underlying perception. In addition, perceptual approaches have become widely viewed as untenable because they are assumed to implement recording systems, not conceptual systems. A perceptual theory of knowledge is developed here in the context of current cognitive science and neuroscience. During perceptual experience, association areas in the brain capture bottom-up patterns of activation in sensory-motor areas. Later, in a top-down manner, association areas partially reactivate sensory-motor areas to implement perceptual symbols. The storage and reactivation of perceptual symbols operates at the level of perceptual components--not at the level of holistic perceptual experiences. Through the use of selective attention, schematic representations of perceptual components are extracted from experience and stored in memory (e.g., individual memories of green, purr, hot). As memories of the same component become organized around a common frame, they implement a simulator that produces limitless simulations of the component (e.g., simulations of purr). Not only do such simulators develop for aspects of sensory experience, they also develop for aspects of proprioception (e.g., lift, run) and introspection (e.g., compare, memory, happy, hungry). Once established, these simulators implement a basic conceptual system that represents types, supports categorization, and produces categorical inferences. These simulators further support productivity, propositions, and abstract concepts, thereby implementing a fully functional conceptual system. Productivity results from integrating simulators combinatorially and recursively to produce complex simulations. Propositions result from binding simulators to perceived individuals to represent type-token relations. Abstract concepts are grounded in complex simulations of combined physical and introspective events. Thus, a perceptual theory of knowledge can implement a fully functional conceptual system while avoiding problems associated with amodal symbol systems. Implications for cognition, neuroscience, evolution, development, and artificial intelligence are explored.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Reward, dopamine and the control of food intake: implications for obesity.

            The ability to resist the urge to eat requires the proper functioning of neuronal circuits involved in top-down control to oppose the conditioned responses that predict reward from eating the food and the desire to eat the food. Imaging studies show that obese subjects might have impairments in dopaminergic pathways that regulate neuronal systems associated with reward sensitivity, conditioning and control. It is known that the neuropeptides that regulate energy balance (homeostatic processes) through the hypothalamus also modulate the activity of dopamine cells and their projections into regions involved in the rewarding processes underlying food intake. It is postulated that this could also be a mechanism by which overeating and the resultant resistance to homoeostatic signals impairs the function of circuits involved in reward sensitivity, conditioning and cognitive control. Published by Elsevier Ltd.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The multisensory perception of flavor.

              Following on from ecological theories of perception, such as the one proposed by [Gibson, J. J. (1966). The senses considered as perceptual systems. Boston: Houghton Mifflin] this paper reviews the literature on the multisensory interactions underlying the perception of flavor in order to determine the extent to which it is really appropriate to consider flavor perception as a distinct perceptual system. We propose that the multisensory perception of flavor may be indicative of the fact that the taxonomy currently used to define our senses is simply not appropriate. According to the view outlined here, the act of eating allows the different qualities of foodstuffs to be combined into unified percepts; and flavor can be used as a term to describe the combination of tastes, smells, trigeminal, and tactile sensations as well as the visual and auditory cues, that we perceive when tasting food.
                Bookmark

                Author and article information

                Journal
                Language, Cognition and Neuroscience
                Language, Cognition and Neuroscience
                Informa UK Limited
                2327-3798
                2327-3801
                April 28 2016
                June 14 2016
                : 31
                : 8
                : 975-988
                Article
                10.1080/23273798.2016.1193619
                6f38b4fc-0014-4bb3-9abb-3272853c0c92
                © 2016
                History

                Comments

                Comment on this article