634
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The anti-k_t jet clustering algorithm

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The k_t and Cambridge/Aachen inclusive jet finding algorithms for hadron-hadron collisions can be seen as belonging to a broader class of sequential recombination jet algorithms, parametrised by the power of the energy scale in the distance measure. We examine some properties of a new member of this class, for which the power is negative. This ``anti-k_t'' algorithm essentially behaves like an idealised cone algorithm, in that jets with only soft fragmentation are conical, active and passive areas are equal, the area anomalous dimensions are zero, the non-global logarithms are those of a rigid boundary and the Milan factor is universal. None of these properties hold for existing sequential recombination algorithms, nor for cone algorithms with split--merge steps, such as SISCone. They are however the identifying characteristics of the collinear unsafe plain ``iterative cone'' algorithm, for which the anti-k_t algorithm provides a natural, fast, infrared and collinear safe replacement.

          Related collections

          Most cited references2

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Momentum Flow Correlations from Event Shapes: Factorized Soft Gluons and Soft-Collinear Effective Theory

          The distributions of two-jet event shapes contain information on hadronization in QCD. Near the two-jet limit, these distributions can be described by convolutions of nonperturbative event shape functions with the same distributions calculated in resummed perturbation theory. The shape functions, in turn, are determined by correlations of momentum flow operators with each other and with light-like Wilson lines, which describe the coupling of soft, wide-angle radiation to jets. We observe that leading power corrections to the mean values of event shapes are determined by the correlation of a single momentum flow operator with the relevant Wilson lines. This generalizes arguments for the universality of leading power corrections based on the low-scale behavior of the running coupling or resummation. We also show how a study of the angularity event shapes can provide information on correlations involving multiple momentum flow operators, giving a window to the system of QCD dynamics that underlies the variety of event shape functions. In deriving these results, we review, develop and compare factorization techniques in conventional perturbative QCD and soft-collinear effective theory (SCET). We give special emphasis to the elimination of double counting of momentum regions in these two formalisms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Event Shape/Energy Flow Correlations

            , , (2010)
            We introduce a set of correlations between energy flow and event shapes that are sensitive to the flow of color at short distances in jet events. These correlations are formulated for a general set of event shapes, which includes jet broadening and thrust as special cases. We illustrate the method for electron-positron annihilation dijet events, and calculate the correlation at leading logarithm in the energy flow and at next-to-leading-logarithm in the event shape.
              Bookmark

              Author and article information

              Journal
              08 February 2008
              2008-04-21
              Article
              10.1088/1126-6708/2008/04/063
              0802.1189
              6f3c321a-40f4-4eb3-902c-f9ae57960715
              History
              Custom metadata
              LPTHE-07-03
              JHEP 0804:063,2008
              12 pages, 5 figures. Small changes made for publication. Version published in JHEP
              hep-ph

              Comments

              Comment on this article