15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Increased ATP and ADO Overflow From Sympathetic Nerve Endings and Mesentery Endothelial Cells Plus Reduced Nitric Oxide Are Involved in Diabetic Neurovascular Dysfunction

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Since the mechanism of human diabetic peripheral neuropathy and vascular disease in type 1 diabetes mellitus remains unknown, we assessed whether sympathetic transmitter overflow is altered by this disease and associated to vascular dysfunction. Diabetes was induced by streptozotocin (STZ)-treatment and compared to vehicle-treated rats. Aliquots of the ex vivo perfused rat arterial mesenteric preparation, denuded of the endothelial layer, were collected to quantify analytically sympathetic nerve co-transmitters overflow secreted by the isolated mesenteries of both groups of rats. Noradrenaline (NA), neuropeptide tyrosine (NPY), and ATP/metabolites were detected before, during, and after electrical field stimulation (EFS, 20 Hz) of the nerve terminals surrounding the mesenteric artery. NA overflow was comparable in both groups; however, basal or EFS-secreted ir-NPY was 26% reduced ( p < 0.05) in diabetics. Basal and EFS-evoked ATP and adenosine (ADO) overflow to the arterial mesentery perfusate increased twofold and was longer lasting in diabetics; purine tissue content was 37.8% increased ( p < 0.05) in the mesenteries from STZ-treated group of rats. Perfusion of the arterial mesentery vascular territory with 100 μM ATP, 100 nM 2-MeSADP, or 1 μM UTP elicited vasodilator responses of the same magnitude in controls or diabetics, but the increase in luminally accessible NO was 60–70% lower in diabetics ( p < 0.05). Moreover, the concentration–response curve elicited by two NO donors was displaced downwards ( p < 0.01) in diabetic rats. Parallel studies using primary cultures of endothelial cells from the arterial mesentery vasculature revealed that mechanical stimulation induced a rise in extracellular nucleotides, which in the cells from diabetic rats was larger and longer-lasting when comparing the extracellular release of ATP and ADO values to those of vehicle-treated controls. A 5 min challenge with purinergic agonists elicited a cell media NO rise, which was reduced in the endothelial cells from diabetic rats. Present findings provide neurochemical support for the diabetes-induced neuropathy and show that mesenteric endothelial cells alterations in response to mechanical stimulation are compatible with the endothelial dysfunction related to vascular disease progress.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: not found
          • Article: not found

          The double life of ATP.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Hyperglycemia and Endothelial Dysfunction in Atherosclerosis: Lessons from Type 1 Diabetes

            A clear relationship between diabetes and cardiovascular disease has been established for decades. Despite this, the mechanisms by which diabetes contributes to plaque formation remain in question. Some of this confusion derives from studies in type 2 diabetics where multiple components of metabolic syndrome show proatherosclerotic effects independent of underlying diabetes. However, the hyperglycemia that defines the diabetic condition independently affects atherogenesis in cell culture systems, animal models, and human patients. Endothelial cell biology plays a central role in atherosclerotic plaque formation regulating vessel permeability, inflammation, and thrombosis. The current paper highlights the mechanisms by which hyperglycemia affects endothelial cell biology to promote plaque formation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Oxygen radical-mediated reduction in basal and agonist-evoked NO release in isolated rat heart.

              Oxygen free radicals (OFR) play a primary role in ischemia-reperfusion-mediated vascular dysfunction and this is paralleled by a loss of endothelial nitric oxide synthase (eNOS) activity. The authors tested whether a direct exposure to OFR may affect vascular relaxation by altering nitric oxide (NO) release. Effects of electrolysis(EL)-generated OFR on basal and agonist-evoked NO release were monitored in isolated rat hearts by oxyhemoglobin assay. Electrolysis-induced changes were compared with those obtained after 30 min perfusion with NOS and cyclooxygenase (COX) inhibitors NG-nitro-L-arginine methyl ester (L-NAME, 100 microM) and indomethacin (INDO, 1 m M). Electrolysis-generated hydroxyl radical (.OH) formed by.O2-and H2O2 via the Fenton reaction as revealed by Electron Paramagnetic Resonance (EPR). After EL, basal NO release declined by 60% and coronary perfusion pressure (CPP) increased by approximately 70%. L-NAME/INDO perfusion similarly lowered NO release (-63%) but increased CPP less than EL (56+/-3%P<0.03 v post-EL). In presence of excess substrates and cofactors eNOS activity was not affected by EL. Both acetylcholine (ACh; 1 microM) and bradykinin (BK; 10 n M) had minimal effect in reversing EL-induced vasoconstriction, whereas both partially reversed L -NAME/INDO-mediated constriction. Sodium nitroprusside (SNP, 1 microM) completely reversed L-NAME/INDO constriction and partly countered that after EL (-38+/-2.5, P<0.001). Acetylcholine-evoked NO release was nearly abolished by both treatments whereas BK still elicited partial NO release after eNOS/cyclooxygenase inhibition (P<0.001) but not after EL. In conclusion, OFR severely impair NO-mediated coronary vasorelaxation affecting both basal and agonist-evoked NO release but not eNOS activity. However, EL also significantly blunts NOS/COX-independent vasodilation suggesting alteration of other vasodilatative pathways. Copyright 2001 Academic Press
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Pharmacol
                Front Pharmacol
                Front. Pharmacol.
                Frontiers in Pharmacology
                Frontiers Media S.A.
                1663-9812
                29 May 2018
                2018
                : 9
                : 546
                Affiliations
                Laboratorio de Farmacología de Nucleótidos, Departamento de Biología, Facultad de Química y Biología, Centro Desarrollo de Nanociencia y NanoTecnología, CEDENNA, Universidad de Santiago de Chile , Santiago, Chile
                Author notes

                Edited by: Paulo Correia-de-Sá, Universidade do Porto, Portugal

                Reviewed by: Nazareno Paolocci, Johns Hopkins University, United States; John D. Imig, Medical College of Wisconsin, United States

                *Correspondence: J. Pablo Huidobro-Toro, juan.garcia-huidobro@ 123456usach.cl

                This article was submitted to Cardiovascular and Smooth Muscle Pharmacology, a section of the journal Frontiers in Pharmacology

                Article
                10.3389/fphar.2018.00546
                5987002
                6f40e270-d560-4897-8115-1f42444f9894
                Copyright © 2018 Donoso, Mascayano, Poblete and Huidobro-Toro.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 16 November 2017
                : 08 May 2018
                Page count
                Figures: 5, Tables: 2, Equations: 0, References: 48, Pages: 13, Words: 0
                Categories
                Pharmacology
                Original Research

                Pharmacology & Pharmaceutical medicine
                streptozotocin-induced diabetes,nucleotide release,extracellular adenosine,cultured endothelial cells,nitric oxide production

                Comments

                Comment on this article