17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tumour mutation status and sites of metastasis in patients with cutaneous melanoma

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background:

          Cutaneous melanoma can metastasise haematogenously and/or lymphogenously to form satellite/in-transit, lymph node or distant metastasis. This study aimed to determine if BRAF and NRAS mutant and wild-type tumours differ in their site of first tumour metastasis and anatomical metastatic pathway.

          Methods:

          Prospective cohort of patients with a histologically confirmed primary cutaneous melanoma at three tertiary referral centres in Melbourne, Australia from 2010 to 2015. Multinomial regression determined clinical, histological and mutational factors associated with the site of first metastasis and metastatic pathway.

          Results:

          Of 1048 patients, 306 (29%) developed metastasis over a median 4.7 year follow-up period. 73 (24%), 192 (63%) and 41 (13%) developed distant, regional lymph node and satellite/in-transit metastasis as the first site of metastasis, respectively. BRAF mutation was associated with lymph node metastasis (adjusted RRR 2.46 95% CI 1.07–5.69, P=0.04) and sentinel lymph node positivity (adjusted odds ratio [aOR] OR 1.55, 95% CI 1.14–2.10, P=0.005). BRAF mutation and NRAS mutation were associated with increased odds of developing liver metastasis (aOR 3.09, 95% CI 1.49–6.42, P=0.003; aOR 3.17, 95% CI 1.32–7.58, P=0.01) and central nervous system (CNS) metastasis (aOR 4.65, 95% CI 2.23–9.69, P<0.001; aOR 4.03, 95% CI 1.72–9.44, P=0.001). NRAS mutation was associated with lung metastasis (aOR 2.44, 95% CI 1.21–4.93, P=0.01).

          Conclusions:

          BRAF mutation was found to be associated with lymph node metastasis as first metastasis and sentinel lymph node positivity. BRAF and NRAS mutations were associated with CNS and liver metastasis and NRAS mutation with lung metastasis. If these findings are validated in additional prospective studies, a role for heightened visceral organ surveillance may be warranted in patients with tumours harbouring these somatic mutations.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Determinants of BRAF mutations in primary melanomas.

          The RAS/mitogen-activated protein kinase pathway sends external growth-promoting signals to the nucleus. BRAF, a critical serine/threonine kinase in this pathway, is frequently activated by somatic mutation in melanoma. Using a cohort of 115 patients with primary invasive melanomas, we show that BRAF mutations are statistically significantly more common in melanomas occurring on skin subject to intermittent sun exposure than elsewhere (23 of 43 patients; P<.001, two-sided Fisher's exact test). By contrast, BRAF mutations in melanomas on chronically sun-damaged skin (1 of 12 patients) and melanomas on skin relatively or completely unexposed to sun, such as palms, soles, subungual sites (6 of 39 patients), and mucosal membranes (2 of 21 patients) are rare. We found no association of mutation status with clinical outcome or with the presence of an associated melanocytic nevus. The mutated BRAF allele was frequently found at an elevated copy number, implicating BRAF as one of the factors driving selection for the frequent copy number increases of chromosome 7q in melanoma. In summary, the uneven distribution of BRAF mutations strongly suggests distinct genetic pathways leading to melanoma. The high mutation frequency in melanomas arising on intermittently sun-exposed skin suggests a complex causative role of such exposure that mandates further evaluation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            NRAS and BRAF mutations in melanoma tumours in relation to clinical characteristics: a study based on mutation screening by pyrosequencing.

            We have previously demonstrated the use of pyrosequencing to investigate NRAS [neuroblastoma RAS viral (v-ras) oncogene homolog] mutations in melanoma biopsies. Here, we expanded the analysis to include BRAF (V-raf murine sarcoma viral oncogene homolog B1), another member of the Ras-Raf-mitogen-activated protein kinase (MAPK) signalling pathway, and analysed a total of 294 melanoma tumours from 219 patients. Mutations in BRAF exons 11 and 15 were identified in 156 (53%) tumours and NRAS exon 2 mutations in 86 (29%) tumours. Overall, mutations in NRAS or BRAF were found in 242 of 294 tumours (82%) and were found to be mutually exclusive in all but two cases (0.7%). Multiple metastases were analysed in 57 of the cases and mutations were identical in all except three, indicating that BRAF and NRAS mutations occur before metastasis. Association with preexisting nevi was significantly higher in BRAF mutated tumours (P=0.014). In addition, tumours with BRAF mutations showed a significantly more frequent moderate to pronounced infiltration of lymphocytes (P=0.013). NRAS mutations were associated with a significantly higher Clark level of invasion (P=0.022) than BRAF mutations. Age at diagnosis was significantly higher in tumours with NRAS mutations than in those with BRAF mutations (P=0.019). NRAS and BRAF mutations, however, did not influence the overall survival from time of diagnosis (P=0.7). In conclusion, the separate genotypes were associated with differences in several key clinical and pathological parameters, indicating differences in the biology of melanoma tumours with different proto-oncogene mutations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Frequency and spectrum of BRAF mutations in a retrospective, single-institution study of 1112 cases of melanoma.

              The US Food and Drug Administration (FDA) approved vemurafenib to treat patients with metastatic melanoma harboring the BRAF c.1799T>A (p.V600E) mutation. However, a subset of melanomas harbor non-p.V600E BRAF mutations, and these data are of potential importance regarding the efficacy of current targeted therapies. To better understand the BRAF mutation profile in melanomas, we retrospectively analyzed data from 1112 primary and metastatic melanomas at our institution. The cohort included nonacral cutaneous (n = 774), acral (n = 111), mucosal (n = 26), uveal (n = 23), leptomeningeal (n = 1), and metastatic melanomas of unknown primary site (n = 177). BRAF mutation hotspot regions in exons 11 and 15 were analyzed by pyrosequencing or with the primer extension MassARRAY system. A total of 499 (44.9%) specimens exhibited BRAF mutations, involving exon 15 [497 (99.6%)] or exon 11 [2 (0.4%)]. p.V600E was detected in 376 (75.4%) cases; the remaining 123 (24.6%) cases exhibited non-p.V600E mutations, of which p.V600K was most frequent [86 (17.2%)]. BRAF mutations were more frequent in nonacral cutaneous (51.4%) than acral melanomas [18 (16.2%)] (P < 0.001); however, there was no significant difference among cutaneous histological subtypes. All mucosal, uveal, and leptomeningeal melanomas were BRAF wild type (WT). The high frequency of non-p.V600E BRAF mutations in melanoma has important implications because the FDA-approved companion diagnostic test for p.V600E detects some but not all non-p.V600E mutations. However, the therapeutic efficacy of vemurafenib is not well established in these lesions. Copyright © 2013 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Br J Cancer
                Br. J. Cancer
                British Journal of Cancer
                Nature Publishing Group
                0007-0920
                1532-1827
                26 September 2017
                08 August 2017
                : 117
                : 7
                : 1026-1035
                Affiliations
                [1 ]Victorian Melanoma Service, Alfred Hospital , Melbourne, Victoria 3004, Australia
                [2 ]School of Public Health and Preventive Medicine, Monash University , Melbourne, Victoria 3004, Australia
                [3 ]Department of Medical Oncology, Alfred Hospital , Melbourne, Victoria 3004, Australia
                [4 ]Divisions of Research and Cancer Medicine, Peter MacCallum Cancer Centre , Melbourne, Victoria 3000, Australia
                [5 ]Sir Peter MacCallum Department of Oncology, University of Melbourne , Victoria 3000, Australia
                [6 ]Department of Anatomical Pathology, Alfred Hospital , Melbourne, Victoria 3004, Australia
                [7 ]Skin and Cancer Foundation , Carlton, Victoria 3053, Australia
                Author notes
                Article
                bjc2017254
                10.1038/bjc.2017.254
                5625668
                28787433
                6f4d9d1d-59af-4e5e-9827-bae4dc27fa14
                Copyright © 2017 Cancer Research UK

                From twelve months after its original publication, this work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 4.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/

                History
                : 06 April 2017
                : 13 June 2017
                : 07 July 2017
                Categories
                Molecular Diagnostics

                Oncology & Radiotherapy
                cutaneous melanoma,melanoma,braf mutation,mutation status,metastasis,sentinel lymph node biopsy

                Comments

                Comment on this article