Blog
About

13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Temporal Differences of Urban-Rural Human Biometeorological Factors for Planning and Tourism in Szeged, Hungary

      , ,

      Advances in Meteorology

      Hindawi Limited

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Heat load and cold stress can provoke annoyance and even health issues. These climatic situations should be avoided by tourists and locals to prevent negative experiences. Thermal comfort indices are required, as they combine meteorological and thermophysiological parameters. The Physiologically Equivalent Temperature (PET) is easy to understand and interpret also for nonexperts like tourists or decision-makers. The Hungarian Meteorological Service and the University of Szeged run an urban and a rural weather station close to Szeged, which build the basis for the human biometeorological analysis for a twelve-year period between 2000 and 2011. The maximum, mean, and minimum air temperature of both stations were compared to detect the differences of thermal dynamics. Heat and cold stress are quantified by analyzing the PET frequencies at 14 CET. The air temperature of urban areas is on average 1.0°C warmer than rural areas (11.4°C). Heat stress is more frequent in urbanized areas (6.3%) during summer months at 14 CET, while thermal acceptance is more frequent for surrounding rural areas (5.9%) in the same period. The Climate-Tourism/Transfer-Information-Scheme is a possibility to present the meteorological and human biometeorological data which is interesting for decision-making and tourism in a well-arranged way.

          Related collections

          Most cited references 21

          • Record: found
          • Abstract: found
          • Article: not found

          The physiological equivalent temperature - a universal index for the biometeorological assessment of the thermal environment.

           P Hoppe (1999)
          With considerably increased coverage of weather information in the news media in recent years in many countries, there is also more demand for data that are applicable and useful for everyday life. Both the perception of the thermal component of weather as well as the appropriate clothing for thermal comfort result from the integral effects of all meteorological parameters relevant for heat exchange between the body and its environment. Regulatory physiological processes can affect the relative importance of meteorological parameters, e.g. wind velocity becomes more important when the body is sweating. In order to take into account all these factors, it is necessary to use a heat-balance model of the human body. The physiological equivalent temperature (PET) is based on the Munich Energy-balance Model for Individuals (MEMI), which models the thermal conditions of the human body in a physiologically relevant way. PET is defined as the air temperature at which, in a typical indoor setting (without wind and solar radiation), the heat budget of the human body is balanced with the same core and skin temperature as under the complex outdoor conditions to be assessed. This way PET enables a layperson to compare the integral effects of complex thermal conditions outside with his or her own experience indoors. On hot summer days, for example, with direct solar irradiation the PET value may be more than 20 K higher than the air temperature, on a windy day in winter up to 15 K lower.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Applications of a universal thermal index: physiological equivalent temperature.

            The physiological equivalent temperature, PET, is a thermal index derived from the human energy balance. It is well suited to the evaluation of the thermal component of different climates. As well as having a detailed physiological basis, PET is preferable to other thermal indexes like the predicted mean vote because of its unit ( degrees C), which makes results more comprehensible to urban or regional planners, for example, who are not so familiar with modern human-biometeorological terminology. PET results can be presented graphically or as bioclimatic maps. Graphs mostly display the temporal behaviour of PET, whereas spatial distribution is specified in bioclimatic maps. In this article, some applications of PET are discussed. They relate to the evaluation of the urban heat island in cities in both temperate climates and warm climates at high altitude. The thermal component of the microclimate in the trunk space of a deciduous forest is also evaluated by PET. As an example of the spatial distribution of PET, a bioclimatic map for Greece in July (Mediterranean climate) is presented.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Modelling radiation fluxes in simple and complex environments--application of the RayMan model.

              The most important meteorological parameter affecting the human energy balance during sunny weather conditions is the mean radiant temperature T(mrt). It considers the uniform temperature of a surrounding surface giving off blackbody radiation, which results in the same energy gain of a human body given the prevailing radiation fluxes. This energy gain usually varies considerably in open space conditions. In this paper, the model 'RayMan', used for the calculation of short- and long-wave radiation fluxes on the human body, is presented. The model, which takes complex urban structures into account, is suitable for several applications in urban areas such as urban planning and street design. The final output of the model is, however, the calculated T(mrt), which is required in the human energy balance model, and thus also for the assessment of the urban bioclimate, with the use of thermal indices such as predicted mean vote (PMV), physiologically equivalent temperature (PET) and standard effective temperature (SET*). The model has been developed based on the German VDI-Guidelines 3789, Part II (environmental meteorology, interactions between atmosphere and surfaces; calculation of short- and long-wave radiation) and VDI-3787 (environmental meteorology, methods for the human-biometeorological evaluation of climate and air quality for urban and regional planning. Part I: climate). The validation of the results of the RayMan model agrees with similar results obtained from experimental studies.
                Bookmark

                Author and article information

                Journal
                Advances in Meteorology
                Advances in Meteorology
                Hindawi Limited
                1687-9309
                1687-9317
                2015
                2015
                : 2015
                :
                : 1-8
                Article
                10.1155/2015/987576
                © 2015

                http://creativecommons.org/licenses/by/3.0/

                Comments

                Comment on this article