Blog
About

  • Record: found
  • Abstract: not found
  • Article: not found

Local effects of the quantum vacuum in Lorentz-violating electrodynamics

,

Physical Review D

American Physical Society (APS)

Read this article at

ScienceOpenPublisher
Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Related collections

      Most cited references 104

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Topological Insulators

       ,   (2011)
      Topological insulators are electronic materials that have a bulk band gap like an ordinary insulator, but have protected conducting states on their edge or surface. The 2D topological insulator is a quantum spin Hall insulator, which is a close cousin of the integer quantum Hall state. A 3D topological insulator supports novel spin polarized 2D Dirac fermions on its surface. In this Colloquium article we will review the theoretical foundation for these electronic states and describe recent experiments in which their signatures have been observed. We will describe transport experiments on HgCdTe quantum wells that demonstrate the existence of the edge states predicted for the quantum spin Hall insulator. We will then discuss experiments on Bi_{1-x}Sb_x, Bi_2 Se_3, Bi_2 Te_3 and Sb_2 Te_3 that establish these materials as 3D topological insulators and directly probe the topology of their surface states. We will then describe exotic states that can occur at the surface of a 3D topological insulator due to an induced energy gap. A magnetic gap leads to a novel quantum Hall state that gives rise to a topological magnetoelectric effect. A superconducting energy gap leads to a state that supports Majorana fermions, and may provide a new venue for realizing proposals for topological quantum computation. We will close by discussing prospects for observing these exotic states, a well as other potential device applications of topological insulators.
        Bookmark
        • Record: found
        • Abstract: found
        • Article: found
        Is Open Access

        Topological insulators and superconductors

        Topological insulators are new states of quantum matter which can not be adiabatically connected to conventional insulators and semiconductors. They are characterized by a full insulating gap in the bulk and gapless edge or surface states which are protected by time-reversal symmetry. These topological materials have been theoretically predicted and experimentally observed in a variety of systems, including HgTe quantum wells, BiSb alloys, and Bi\(_2\)Te\(_3\) and Bi\(_2\)Se\(_3\) crystals. We review theoretical models, materials properties and experimental results on two-dimensional and three-dimensional topological insulators, and discuss both the topological band theory and the topological field theory. Topological superconductors have a full pairing gap in the bulk and gapless surface states consisting of Majorana fermions. We review the theory of topological superconductors in close analogy to the theory of topological insulators.
          Bookmark
          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Noncommutative Field Theory

          We review the generalization of field theory to space-time with noncommuting coordinates, starting with the basics and covering most of the active directions of research. Such theories are now known to emerge from limits of M theory and string theory, and to describe quantum Hall states. In the last few years they have been studied intensively, and many qualitatively new phenomena have been discovered, both on the classical and quantum level. To appear in Reviews of Modern Physics.
            Bookmark

            Author and article information

            Journal
            PRVDAQ
            Physical Review D
            Phys. Rev. D
            American Physical Society (APS)
            2470-0010
            2470-0029
            February 2017
            February 15 2017
            : 95
            : 3
            10.1103/PhysRevD.95.036011
            © 2017

            http://link.aps.org/licenses/aps-default-license

            Product

            Comments

            Comment on this article