139
views
0
recommends
+1 Recommend
0 collections
    1
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Physiological Characterisation of Human iPS-Derived Dopaminergic Neurons

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Human induced pluripotent stem cells (hiPSCs) offer the potential to study otherwise inaccessible cell types. Critical to this is the directed differentiation of hiPSCs into functional cell lineages. This is of particular relevance to research into neurological disease, such as Parkinson’s disease (PD), in which midbrain dopaminergic neurons degenerate during disease progression but are unobtainable until post-mortem. Here we report a detailed study into the physiological maturation over time of human dopaminergic neurons in vitro. We first generated and differentiated hiPSC lines into midbrain dopaminergic neurons and performed a comprehensive characterisation to confirm dopaminergic functionality by demonstrating dopamine synthesis, release, and re-uptake. The neuronal cultures include cells positive for both tyrosine hydroxylase (TH) and G protein-activated inward rectifier potassium channel 2 (Kir3.2, henceforth referred to as GIRK2), representative of the A9 population of substantia nigra pars compacta (SNc) neurons vulnerable in PD. We observed for the first time the maturation of the slow autonomous pace-making (<10 Hz) and spontaneous synaptic activity typical of mature SNc dopaminergic neurons using a combination of calcium imaging and electrophysiology. hiPSC-derived neurons exhibited inositol tri-phosphate (IP3) receptor-dependent release of intracellular calcium from the endoplasmic reticulum in neuronal processes as calcium waves propagating from apical and distal dendrites, and in the soma. Finally, neurons were susceptible to the dopamine neuron-specific toxin 1-methyl-4-phenylpyridinium (MPP+) which reduced mitochondrial membrane potential and altered mitochondrial morphology. Mature hiPSC-derived dopaminergic neurons provide a neurophysiologically-defined model of previously inaccessible vulnerable SNc dopaminergic neurons to bridge the gap between clinical PD and animal models.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Human induced pluripotent stem cells free of vector and transgene sequences.

          Reprogramming differentiated human cells to induced pluripotent stem (iPS) cells has applications in basic biology, drug development, and transplantation. Human iPS cell derivation previously required vectors that integrate into the genome, which can create mutations and limit the utility of the cells in both research and clinical applications. We describe the derivation of human iPS cells with the use of nonintegrating episomal vectors. After removal of the episome, iPS cells completely free of vector and transgene sequences are derived that are similar to human embryonic stem (ES) cells in proliferative and developmental potential. These results demonstrate that reprogramming human somatic cells does not require genomic integration or the continued presence of exogenous reprogramming factors and removes one obstacle to the clinical application of human iPS cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress.

            Studies of Parkinson's disease (PD) have been hindered by lack of access to affected human dopaminergic (DA) neurons. Here, we report generation of induced pluripotent stem cells that carry the p.G2019S mutation (G2019S-iPSCs) in the Leucine-Rich Repeat Kinase-2 (LRRK2) gene, the most common PD-related mutation, and their differentiation into DA neurons. The high penetrance of the LRRK2 mutation and its clinical resemblance to sporadic PD suggest that these cells could provide a valuable platform for disease analysis and drug development. We found that DA neurons derived from G2019S-iPSCs showed increased expression of key oxidative stress-response genes and α-synuclein protein. The mutant neurons were also more sensitive to caspase-3 activation and cell death caused by exposure to stress agents, such as hydrogen peroxide, MG-132, and 6-hydroxydopamine, than control DA neurons. This enhanced stress sensitivity is consistent with existing understanding of early PD phenotypes and represents a potential therapeutic target. Copyright © 2011 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              NAADP mobilizes calcium from acidic organelles through two-pore channels

              Ca2+ mobilization from intracellular stores represents an important cell signaling process 1 which is regulated, in mammalian cells, by inositol 1,4,5-trisphosphate (InsP3), cyclic ADP ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP). InsP3 and cADPR release Ca2+ from sarco / endoplasmic reticulum (S/ER) stores through activation of InsP3 and ryanodine receptors (InsP3Rs and RyRs). By contrast, the nature of the intracellular stores targeted by NAADP and molecular identity of the NAADP receptors remain controversial 1,2, although evidence indicates that NAADP mobilizes Ca2+ from lysosome-related acidic compartments 3,4. Here we show that two-pore channels (TPCs) comprise a family of NAADP receptors, with TPC1 and TPC3 being expressed on endosomal and TPC2 on lysosomal membranes. Membranes enriched with TPC2 exhibit high affinity NAADP binding and TPC2 underpins NAADP-induced Ca2+ release from lysosome-related stores that is subsequently amplified by Ca2+-induced Ca2+ release via InsP3Rs. Responses to NAADP were abolished by disrupting the lysosomal proton gradient and by ablating TPC2 expression, but only attenuated by depleting ER Ca2+ stores or blocking InsP3Rs. Thus, TPCs form NAADP receptors that release Ca2+ from acidic organelles, which can trigger additional Ca2+ signals via S/ER. TPCs therefore provide new insights into the regulation and organization of Ca2+ signals in animal cells and will advance our understanding of the physiological role of NAADP.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                21 February 2014
                : 9
                : 2
                : e87388
                Affiliations
                [1 ]Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
                [2 ]Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
                [3 ]The James Martin Stem Cell Facility, Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
                UCL Institute of Neurology, United Kingdom
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: EMH MYM SAC RWM WSJ. Performed the experiments: EMH MYM HJRF JV SAC. Analyzed the data: EMH MYM JV SAC. Wrote the paper: EMH MYM SAC RWM.

                Article
                PONE-D-13-31746
                10.1371/journal.pone.0087388
                3931621
                24586273
                6f78d714-60af-4398-9ab1-16944129b19d
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 2 August 2013
                : 24 December 2013
                Page count
                Pages: 14
                Funding
                The work was supported by the Monument Trust Discovery Award from Parkinson’s UK and The Oxford James Martin Stem Cell Facility. MYM holds a James Martin Research Fellowship, and SC holds a Wellcome Trust Career Re-Entry Fellowship (WT082260/Z/07/Z). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Anatomy and physiology
                Electrophysiology
                Developmental biology
                Stem cells
                Induced pluripotent stem cells
                Cell differentiation
                Immunology
                Immunologic techniques
                Immunofluorescence
                Neuroscience
                Neurochemistry
                Neurochemicals
                Dopamine
                Neuroimaging
                Calcium imaging
                Cellular neuroscience
                Medicine
                Neurology
                Parkinson disease

                Uncategorized
                Uncategorized

                Comments

                Comment on this article