4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Natural outer membrane permeabilizers boost antibiotic action against irradiated resistant bacteria

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          This study sought to develop new strategies for reverting the resistance of pathogenic Gram-negative bacilli by a combination of conventional antibiotics, potent permeabilizers and natural beta lactamase inhibitors enhancing the activity of various antibiotics.

          Methods

          The antibiotic susceptibility in the presence of natural non-antibacterial tested concentrations of phytochemicals (permeabilizers and natural beta lactamase inhibitors) was performed by disk diffusion and susceptibility assays. Thymol and gallic acid were the most potent permeabilizers and facilitated the passage of the antibiotics through the outer membrane, as evidenced by their ability to cause LPS release, sensitize bacteria to SDS and Triton X-100.

          Results

          The combination of permeabilizers and natural beta lactamase inhibitors (quercetin and epigallocatechin gallate) with antibiotics induced greater susceptibility of resistant isolates compared to antibiotic treatment with beta lactamase inhibitors alone. Pronounced effects were detected with 24.4 Gy in vitro gamma irradiation on permeability barrier, beta lactamase activity, and outer membrane protein profiles of the tested isolates.

          Conclusions

          The synergistic effects of the studied natural phytochemicals and antibiotics leads to new clinical choices via outer membrane destabilization (permeabilizers) and/or inactivation of the beta lactamase enzyme, which enables the use of older, more cost-effective antibiotics against resistant strains.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Antimicrobial activity of flavonoids

          Flavonoids are ubiquitous in photosynthesising cells and are commonly found in fruit, vegetables, nuts, seeds, stems, flowers, tea, wine, propolis and honey. For centuries, preparations containing these compounds as the principal physiologically active constituents have been used to treat human diseases. Increasingly, this class of natural products is becoming the subject of anti-infective research, and many groups have isolated and identified the structures of flavonoids possessing antifungal, antiviral and antibacterial activity. Moreover, several groups have demonstrated synergy between active flavonoids as well as between flavonoids and existing chemotherapeutics. Reports of activity in the field of antibacterial flavonoid research are widely conflicting, probably owing to inter- and intra-assay variation in susceptibility testing. However, several high-quality investigations have examined the relationship between flavonoid structure and antibacterial activity and these are in close agreement. In addition, numerous research groups have sought to elucidate the antibacterial mechanisms of action of selected flavonoids. The activity of quercetin, for example, has been at least partially attributed to inhibition of DNA gyrase. It has also been proposed that sophoraflavone G and (−)-epigallocatechin gallate inhibit cytoplasmic membrane function, and that licochalcones A and C inhibit energy metabolism. Other flavonoids whose mechanisms of action have been investigated include robinetin, myricetin, apigenin, rutin, galangin, 2,4,2′-trihydroxy-5′-methylchalcone and lonchocarpol A. These compounds represent novel leads, and future studies may allow the development of a pharmacologically acceptable antimicrobial agent or class of agents.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Characterization of the Action of Selected Essential Oil Components on Gram-Negative Bacteria

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Plants as sources of new antimicrobials and resistance-modifying agents.

              Infections caused by multidrug-resistant bacteria are an increasing problem due to the emergence and propagation of microbial drug resistance and the lack of development of new antimicrobials. Traditional methods of antibiotic discovery have failed to keep pace with the evolution of resistance. Therefore, new strategies to control bacterial infections are highly desirable. Plant secondary metabolites (phytochemicals) have already demonstrated their potential as antibacterials when used alone and as synergists or potentiators of other antibacterial agents. The use of phytochemical products and plant extracts as resistance-modifying agents (RMAs) represents an increasingly active research topic. Phytochemicals frequently act through different mechanisms than conventional antibiotics and could, therefore be of use in the treatment of resistant bacteria. The therapeutic utility of these products, however, remains to be clinically proven. The aim of this article is to review the advances in in vitro and in vivo studies on the potential chemotherapeutic value of phytochemical products and plant extracts as RMAs to restore the efficacy of antibiotics against resistant pathogenic bacteria. The mode of action of RMAs on the potentiation of antibiotics is also described.
                Bookmark

                Author and article information

                Contributors
                01001573826 , hala_farrag_24@hotmail.com
                01288881036 , abdallanagwa@yahoo.com
                01006608820 , mona.kamal@hotmail.com
                01006521760 , samar_mohamed_awad@hotmail.com
                Journal
                J Biomed Sci
                J. Biomed. Sci
                Journal of Biomedical Science
                BioMed Central (London )
                1021-7770
                1423-0127
                9 September 2019
                9 September 2019
                2019
                : 26
                : 69
                Affiliations
                [1 ]ISNI 0000 0000 9052 0245, GRID grid.429648.5, Drug Radiation Research Department, National Center for Radiation Research and Technology, Atomic Energy Authority, ; P.O. Box 29, Nasr City, Cairo, Egypt
                [2 ]ISNI 0000 0004 0621 1570, GRID grid.7269.a, Microbiology Department, Faculty of Science, , Ain Shams University, ; Cairo, Egypt
                Article
                561
                10.1186/s12929-019-0561-6
                6732830
                31500622
                6f79f627-a27d-4cb9-ac05-856e2caf2e40
                © The Author(s). 2019

                Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 25 May 2019
                : 23 August 2019
                Categories
                Research
                Custom metadata
                © The Author(s) 2019

                Molecular medicine
                pathogenic gram-negative bacilli,outer membrane permeability,beta lactam resistance,permeabilizers,natural beta lactamase inhibitors,in vitro gamma irradiation

                Comments

                Comment on this article