56
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Infant fungal communities: current knowledge and research opportunities

      review-article
      1 , 1 , 2 , 3 ,
      BMC Medicine
      BioMed Central
      Mycobiome, Fungi, Microbiome, Bacteria, Infant, Microbiota, Mycobiota, Development

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The microbes colonizing the infant gastrointestinal tract have been implicated in later-life disease states such as allergies and obesity. Recently, the medical research community has begun to realize that very early colonization events may be most impactful on future health, with the presence of key taxa required for proper immune and metabolic development. However, most studies to date have focused on bacterial colonization events and have left out fungi, a clinically important sub-population of the microbiota. A number of recent findings indicate the importance of host-associated fungi (the mycobiota) in adult and infant disease states, including acute infections, allergies, and metabolism, making characterization of early human mycobiota an important frontier of medical research. This review summarizes the current state of knowledge with a focus on factors influencing infant mycobiota development and associations between early fungal exposures and health outcomes. We also propose next steps for infant fungal mycobiome research, including longitudinal studies of mother–infant pairs while monitoring long-term health outcomes, further exploration of bacterium–fungus interactions, and improved methods and databases for mycobiome quantitation.

          Related collections

          Most cited references94

          • Record: found
          • Abstract: found
          • Article: not found

          A core gut microbiome in obese and lean twins

          The human distal gut harbors a vast ensemble of microbes (the microbiota) that provide us with important metabolic capabilities, including the ability to extract energy from otherwise indigestible dietary polysaccharides1–6. Studies of a small number of unrelated, healthy adults have revealed substantial diversity in their gut communities, as measured by sequencing 16S rRNA genes6–8, yet how this diversity relates to function and to the rest of the genes in the collective genomes of the microbiota (the gut microbiome) remains obscure. Studies of lean and obese mice suggest that the gut microbiota affects energy balance by influencing the efficiency of calorie harvest from the diet, and how this harvested energy is utilized and stored3–5. To address the question of how host genotype, environmental exposures, and host adiposity influence the gut microbiome, we have characterized the fecal microbial communities of adult female monozygotic and dizygotic twin pairs concordant for leanness or obesity, and their mothers. Analysis of 154 individuals yielded 9,920 near full-length and 1,937,461 partial bacterial 16S rRNA sequences, plus 2.14 gigabases from their microbiomes. The results reveal that the human gut microbiome is shared among family members, but that each person’s gut microbial community varies in the specific bacterial lineages present, with a comparable degree of co-variation between adult monozygotic and dizygotic twin pairs. However, there was a wide array of shared microbial genes among sampled individuals, comprising an extensive, identifiable ‘core microbiome’ at the gene, rather than at the organismal lineage level. Obesity is associated with phylum-level changes in the microbiota, reduced bacterial diversity, and altered representation of bacterial genes and metabolic pathways. These results demonstrate that a diversity of organismal assemblages can nonetheless yield a core microbiome at a functional level, and that deviations from this core are associated with different physiologic states (obese versus lean).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns.

            Upon delivery, the neonate is exposed for the first time to a wide array of microbes from a variety of sources, including maternal bacteria. Although prior studies have suggested that delivery mode shapes the microbiota's establishment and, subsequently, its role in child health, most researchers have focused on specific bacterial taxa or on a single body habitat, the gut. Thus, the initiation stage of human microbiome development remains obscure. The goal of the present study was to obtain a community-wide perspective on the influence of delivery mode and body habitat on the neonate's first microbiota. We used multiplexed 16S rRNA gene pyrosequencing to characterize bacterial communities from mothers and their newborn babies, four born vaginally and six born via Cesarean section. Mothers' skin, oral mucosa, and vagina were sampled 1 h before delivery, and neonates' skin, oral mucosa, and nasopharyngeal aspirate were sampled <5 min, and meconium <24 h, after delivery. We found that in direct contrast to the highly differentiated communities of their mothers, neonates harbored bacterial communities that were undifferentiated across multiple body habitats, regardless of delivery mode. Our results also show that vaginally delivered infants acquired bacterial communities resembling their own mother's vaginal microbiota, dominated by Lactobacillus, Prevotella, or Sneathia spp., and C-section infants harbored bacterial communities similar to those found on the skin surface, dominated by Staphylococcus, Corynebacterium, and Propionibacterium spp. These findings establish an important baseline for studies tracking the human microbiome's successional development in different body habitats following different delivery modes, and their associated effects on infant health.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life.

              The gut microbiota is central to human health, but its establishment in early life has not been quantitatively and functionally examined. Applying metagenomic analysis on fecal samples from a large cohort of Swedish infants and their mothers, we characterized the gut microbiome during the first year of life and assessed the impact of mode of delivery and feeding on its establishment. In contrast to vaginally delivered infants, the gut microbiota of infants delivered by C-section showed significantly less resemblance to their mothers. Nutrition had a major impact on early microbiota composition and function, with cessation of breast-feeding, rather than introduction of solid food, being required for maturation into an adult-like microbiota. Microbiota composition and ecological network had distinctive features at each sampled stage, in accordance with functional maturation of the microbiome. Our findings establish a framework for understanding the interplay between the gut microbiome and the human body in early life.
                Bookmark

                Author and article information

                Contributors
                tward@umn.edu
                dknights@umn.edu
                galex012@umn.edu
                Journal
                BMC Med
                BMC Med
                BMC Medicine
                BioMed Central (London )
                1741-7015
                13 February 2017
                13 February 2017
                2017
                : 15
                : 30
                Affiliations
                [1 ]ISNI 0000000419368657, GRID grid.17635.36, Biotechnology Institute, , University of Minnesota, ; Saint Paul, MN USA
                [2 ]ISNI 0000000419368657, GRID grid.17635.36, Department of Computer Science and Engineering, , University of Minnesota, ; Minneapolis, MN USA
                [3 ]ISNI 0000000419368657, GRID grid.17635.36, Department of Pediatrics, , University of Minnesota, ; 2450 Riverside Ave, Minneapolis, MN 55454 USA
                Article
                802
                10.1186/s12916-017-0802-z
                5304398
                28190400
                6f817b0a-9faa-4d60-a179-0ec1cf72a155
                © The Author(s). 2017

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 30 August 2016
                : 24 January 2017
                Categories
                Review
                Custom metadata
                © The Author(s) 2017

                Medicine
                mycobiome,fungi,microbiome,bacteria,infant,microbiota,mycobiota,development
                Medicine
                mycobiome, fungi, microbiome, bacteria, infant, microbiota, mycobiota, development

                Comments

                Comment on this article