0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Rare Case of Community-Acquired Endocarditis Caused by Neisseria meningitidis Assessed by Clinical Metagenomics

      case-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The most common causes of infective endocarditis (IE) are Staphylococcus, Streptococcus, Enterococcus, and HACEK-related organisms. In 15–30% of the IE cases, standard blood cultures remain sterile. We aimed at identifying the causative agent of a blood-culture-negative IE by whole metagenome shotgun sequencing (WMGS). A 54-year old woman diagnosed with community-onset pneumonia by a general practitioner, was admitted with dyspnea, cough and fever. The patient's blood cultures were repeatedly negative. The transesophageal echocardiography and transthoracic echocardiography showed an echo density on the left coronary leaflet of the aortic valve and signs suggestive of a ruptured abscess of the mitro-aortic junction. The patient underwent a semi-urgent aortic valve replacement by a mechanical prosthetic valve. We extracted DNA from the surgically-removed fresh valve tissue. The extraction procedure included bacterial/fungal DNA enrichment procedure. Nextera XT library prepared from the valve DNA extract was sequenced (2 × 250) on an Illumina MiSeq instrument. Sequence reads were mapped against bacterial genomic sequences, 16S rRNA genes and clade-specific taxonomic markers. Most of the 103,136 sequencing reads classified as bacterial were assigned to Neisseria meningitidis. In line with these data, mapping of reads against clade-specific and 16S rRNA gene markers revealed N. meningitidis as the most represented species. Assembled metagenomic fragments had the best average nucleotide identity (ANI) with N. meningitidis. Comparison of assembled contigs to reference alleles showed that this strain belongs to the ST-41/44 complex. N. meningitidis is commonly associated with meningitis and/or septicemia but should not be neglected as a causative agent of IE, which became exceedingly rare with the introduction of antibiotics. Our data show that WMGS may be used as a diagnostic procedure to strengthen the diagnosis of IE and to obtain draft genomic sequence of the pathogen and typing information.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Growth dynamics of gut microbiota in health and disease inferred from single metagenomic samples.

          Metagenomic sequencing increased our understanding of the role of the microbiome in health and disease, yet it only provides a snapshot of a highly dynamic ecosystem. Here, we show that the pattern of metagenomic sequencing read coverage for different microbial genomes contains a single trough and a single peak, the latter coinciding with the bacterial origin of replication. Furthermore, the ratio of sequencing coverage between the peak and trough provides a quantitative measure of a species' growth rate. We demonstrate this in vitro and in vivo, under different growth conditions, and in complex bacterial communities. For several bacterial species, peak-to-trough coverage ratios, but not relative abundances, correlated with the manifestation of inflammatory bowel disease and type II diabetes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Simultaneous detection of Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae in suspected cases of meningitis and septicemia using real-time PCR.

            A single-tube 5' nuclease multiplex PCR assay was developed on the ABI 7700 Sequence Detection System (TaqMan) for the detection of Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae from clinical samples of cerebrospinal fluid (CSF), plasma, serum, and whole blood. Capsular transport (ctrA), capsulation (bexA), and pneumolysin (ply) gene targets specific for N. meningitidis, H. influenzae, and S. pneumoniae, respectively, were selected. Using sequence-specific fluorescent-dye-labeled probes and continuous real-time monitoring, accumulation of amplified product was measured. Sensitivity was assessed using clinical samples (CSF, serum, plasma, and whole blood) from culture-confirmed cases for the three organisms. The respective sensitivities (as percentages) for N. meningitidis, H. influenzae, and S. pneumoniae were 88.4, 100, and 91.8. The primer sets were 100% specific for the selected culture isolates. The ctrA primers amplified meningococcal serogroups A, B, C, 29E, W135, X, Y, and Z; the ply primers amplified pneumococcal serotypes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10A, 11A, 12, 14, 15B, 17F, 18C, 19, 20, 22, 23, 24, 31, and 33; and the bexA primers amplified H. influenzae types b and c. Coamplification of two target genes without a loss of sensitivity was demonstrated. The multiplex assay was then used to test a large number (n = 4,113) of culture-negative samples for the three pathogens. Cases of meningococcal, H. influenzae, and pneumococcal disease that had not previously been confirmed by culture were identified with this assay. The ctrA primer set used in the multiplex PCR was found to be more sensitive (P < 0.0001) than the ctrA primers that had been used for meningococcal PCR testing at that time.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Diverse and widespread contamination evident in the unmapped depths of high throughput sequencing data

              Background: Trace quantities of contaminating DNA are widespread in the laboratory environment, but their presence has received little attention in the context of high throughput sequencing. This issue is highlighted by recent works that have rested controversial claims upon sequencing data that appear to support the presence of unexpected exogenous species. Results: I used reads that preferentially aligned to alternate genomes to infer the distribution of potential contaminant species in a set of independent sequencing experiments. I confirmed that dilute samples are more exposed to contaminating DNA, and, focusing on four single-cell sequencing experiments, found that these contaminants appear to originate from a wide diversity of clades. Although negative control libraries prepared from "blank" samples recovered the highest-frequency contaminants, low-frequency contaminants, which appeared to make heterogeneous contributions to samples prepared in parallel within a single experiment, were not well controlled for. I used these results to show that, despite heavy replication and plausible controls, contamination can explain all of the observations used to support a recent claim that complete genes pass from food to human blood. Conclusions: Contamination must be considered a potential source of signals of exogenous species in sequencing data, even if these signals are replicated in independent experiments, vary across conditions, or indicate a species which seems a priori unlikely to contaminate. Negative control libraries processed in parallel are essential to control for contaminant DNAs, but their limited ability to recover low-frequency contaminants must be recognized.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cardiovasc Med
                Front Cardiovasc Med
                Front. Cardiovasc. Med.
                Frontiers in Cardiovascular Medicine
                Frontiers Media S.A.
                2297-055X
                06 August 2019
                2019
                : 6
                : 112
                Affiliations
                [1] 1Service of General Internal Medicine, Geneva University Hospitals (HUG) , Geneva, Switzerland
                [2] 2Genomic Research Laboratory, Service of Infectious Diseases, Geneva University Hospitals, Geneva University , Geneva, Switzerland
                [3] 3Bacteriology Laboratory, Service of Laboratory Medicine, Geneva University Hospitals , Geneva, Switzerland
                [4] 4Service of Laboratory Medicine, National Reference Center on Meningococci, Geneva University Hospitals , Geneva, Switzerland
                [5] 5Institute for Infectious Diseases, University of Bern , Bern, Switzerland
                [6] 6Department of Cardiovascular Surgery, Geneva University Hospitals , Geneva, Switzerland
                Author notes

                Edited by: Ailin Barseghian, University of California, Irvine, United States

                Reviewed by: Christoph Sinning, Universitäres Herzzentrum Hamburg GmbH (UHZ), Germany; Yong-Jae Kim, Seoul St. Mary's Hospital, The Catholic University of Korea, South Korea

                *Correspondence: Jacques Schrenzel jacques.schrenzel@ 123456hcuge.ch

                This article was submitted to Cardiovascular Epidemiology and Prevention, a section of the journal Frontiers in Cardiovascular Medicine

                †These authors have contributed equally to this work

                Article
                10.3389/fcvm.2019.00112
                6691042
                6f9787be-f967-4584-b560-e48648d399ef
                Copyright © 2019 Choutko, Lazarevic, Gaïa, Girard, Renzi, Leo, Keller, Huber and Schrenzel.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 23 April 2019
                : 23 July 2019
                Page count
                Figures: 2, Tables: 0, Equations: 0, References: 25, Pages: 5, Words: 3537
                Categories
                Cardiovascular Medicine
                Case Report

                next-generation sequencing,cardiac valve,endocarditis,culture-negative infection,clinical metagenomics,neisseria meningitidis

                Comments

                Comment on this article