89
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Characterization of Sleep in Zebrafish and Insomnia in Hypocretin Receptor Mutants

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sleep is a fundamental biological process conserved across the animal kingdom. The study of how sleep regulatory networks are conserved is needed to better understand sleep across evolution. We present a detailed description of a sleep state in adult zebrafish characterized by reversible periods of immobility, increased arousal threshold, and place preference. Rest deprivation using gentle electrical stimulation is followed by a sleep rebound, indicating homeostatic regulation. In contrast to mammals and similarly to birds, light suppresses sleep in zebrafish, with no evidence for a sleep rebound. We also identify a null mutation in the sole receptor for the wake-promoting neuropeptide hypocretin (orexin) in zebrafish. Fish lacking this receptor demonstrate short and fragmented sleep in the dark, in striking contrast to the excessive sleepiness and cataplexy of narcolepsy in mammals. Consistent with this observation, we find that the hypocretin receptor does not colocalize with known major wake-promoting monoaminergic and cholinergic cell groups in the zebrafish. Instead, it colocalizes with large populations of GABAergic neurons, including a subpopulation of Adra2a-positive GABAergic cells in the anterior hypothalamic area, neurons that could assume a sleep modulatory role. Our study validates the use of zebrafish for the study of sleep and indicates molecular diversity in sleep regulatory networks across vertebrates.

          Author Summary

          Sleep disorders are common and poorly understood. Further, how and why the brain generates sleep is the object of intense speculations. In this study, we demonstrate that a bony fish used for genetic studies sleeps and that a molecule, hypocretin, involved in causing narcolepsy, is conserved. In humans, narcolepsy is a sleep disorder associated with sleepiness, abnormal dreaming, and paralysis and insomnia. We generated a mutant fish in which the hypocretin system was disrupted. Intriguingly, this fish sleep mutant does not display sleepiness or paralysis but has a 30% reduction of its sleep time at night and a 60% decrease in sleep bout length compared with non-mutant fish. We also studied the relationships between the hypocretin system and other sleep regulatory brain systems in zebrafish and found differences in expression patterns in the brain that may explain the differences in behavior. Our study illustrates how a sleep regulatory system may have evolved across vertebrate phylogeny. Zebrafish, a powerful genetic model that has the advantage of transparency to study neuronal networks in vivo, can be used to study sleep.

          Abstract

          Zebrafish sleep, and have the receptor for the wake-inducing molecule hypocretin. While mutation in this receptor causes narcolepsy in mammals, in fish, sleep is fragmented, demonstrating differences in sleep control in vertebrates.

          Related collections

          Most cited references82

          • Record: found
          • Abstract: found
          • Article: not found

          The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity.

          We describe a hypothalamus-specific mRNA that encodes preprohypocretin, the putative precursor of a pair of peptides that share substantial amino acid identities with the gut hormone secretin. The hypocretin (Hcrt) protein products are restricted to neuronal cell bodies of the dorsal and lateral hypothalamic areas. The fibers of these neurons are widespread throughout the posterior hypothalamus and project to multiple targets in other areas, including brainstem and thalamus. Hcrt immunoreactivity is associated with large granular vesicles at synapses. One of the Hcrt peptides was excitatory when applied to cultured, synaptically coupled hypothalamic neurons, but not hippocampal neurons. These observations suggest that the hypocretins function within the CNS as neurotransmitters.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains.

            We explored the role of hypocretins in human narcolepsy through histopathology of six narcolepsy brains and mutation screening of Hcrt, Hcrtr1 and Hcrtr2 in 74 patients of various human leukocyte antigen and family history status. One Hcrt mutation, impairing peptide trafficking and processing, was found in a single case with early onset narcolepsy. In situ hybridization of the perifornical area and peptide radioimmunoassays indicated global loss of hypocretins, without gliosis or signs of inflammation in all human cases examined. Although hypocretin loci do not contribute significantly to genetic predisposition, most cases of human narcolepsy are associated with a deficient hypocretin system.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reduced number of hypocretin neurons in human narcolepsy.

              Murine and canine narcolepsy can be caused by mutations of the hypocretin (Hcrt) (orexin) precursor or Hcrt receptor genes. In contrast to these animal models, most human narcolepsy is not familial, is discordant in identical twins, and has not been linked to mutations of the Hcrt system. Thus, the cause of human narcolepsy remains unknown. Here we show that human narcoleptics have an 85%-95% reduction in the number of Hcrt neurons. Melanin-concentrating hormone (MCH) neurons, which are intermixed with Hcrt cells in the normal brain, are not reduced in number, indicating that cell loss is relatively specific for Hcrt neurons. The presence of gliosis in the hypocretin cell region is consistent with a degenerative process being the cause of the Hcrt cell loss in narcolepsy.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                pbio
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                October 2007
                16 October 2007
                : 5
                : 10
                : e277
                Affiliations
                [1 ] Howard Hughes Medical Institute, Stanford University, Palo Alto, California, United States of America
                [2 ] Stanford Center for Narcolepsy, Stanford University, Palo Alto, California, United States of America
                [3 ] Ecole Normale Supérieure, Paris, France
                [4 ] INSERM Unité 784, Paris, France
                Wellcome Trust Sanger Institute, United Kingdom
                Author notes
                * To whom correspondence should be addressed. E-mail: mignot@ 123456stanford.edu
                Article
                07-PLBI-RA-0323R3 plbi-05-10-28
                10.1371/journal.pbio.0050277
                2020497
                17941721
                6fb79870-56fb-438f-884c-e79ca9311775
                Copyright: © 2007 Yokogawa et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 14 February 2007
                : 24 August 2007
                Page count
                Pages: 19
                Categories
                Research Article
                Genetics and Genomics
                Neurological Disorders
                Neuroscience
                Custom metadata
                Yokogawa T, Marin W, Faraco J, Pézeron G, Appelbaum L, et al. (2007) Characterization of sleep in zebrafish and insomnia in hypocretin receptor mutants. PLoS Biol 5(10): e277. doi: 10.1371/journal.pbio.0050277

                Life sciences
                Life sciences

                Comments

                Comment on this article