15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Biomass Chars: The Effects of Pyrolysis Conditions on Their Morphology, Structure, Chemical Properties and Reactivity

      , , , ,
      Energies
      MDPI AG

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Dynamic molecular structure of plant biomass-derived black carbon (biochar).

          Char black carbon (BC), the solid residue of incomplete combustion, is continuously being added to soils and sediments due to natural vegetation fires, anthropogenic pollution, and new strategies for carbon sequestration ("biochar"). Here we present a molecular-level assessment of the physical organization and chemical complexity of biomass-derived chars and, specifically, that of aromatic carbon in char structures. Brunauer-Emmett-Teller (BET)-N(2) surface area (SA), X-ray diffraction (XRD), synchrotron-based near-edge X-ray absorption fine structure (NEXAFS), and Fourier transform infrared (FT-IR) spectroscopy are used to show how two plant materials (wood and grass) undergo analogous but quantitatively different physical-chemical transitions as charring temperature increases from 100 to 700 degrees C. These changes suggest the existence of four distinct categories of char consisting of a unique mixture of chemical phases and physical states: (i) in transition chars, the crystalline character of the precursor materials is preserved; (ii) in amorphous chars, the heat-altered molecules and incipient aromatic polycondensates are randomly mixed; (iii) composite chars consist of poorly ordered graphene stacks embedded in amorphous phases; and (iv) turbostratic chars are dominated by disordered graphitic crystallites. Molecular variations among the different char categories likely translate into differences in their ability to persist in the environment and function as environmental sorbents.
            • Record: found
            • Abstract: not found
            • Article: not found

            Characterization of biochar from fast pyrolysis and gasification systems

              • Record: found
              • Abstract: not found
              • Article: not found

              The effect of pyrolysis conditions on biochar stability as determined by three methods

                Author and article information

                Journal
                ENERGA
                Energies
                Energies
                MDPI AG
                1996-1073
                June 2017
                June 11 2017
                : 10
                : 6
                : 796
                Article
                10.3390/en10060796
                6fc2bc6c-bc88-488f-8ed7-7342638b4302
                © 2017

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article

                Related Documents Log