35
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      International Journal of Nanomedicine (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the application of nanotechnology in diagnostics, therapeutics, and drug delivery systems throughout the biomedical field. Sign up for email alerts here.

      105,621 Monthly downloads/views I 7.033 Impact Factor I 10.9 CiteScore I 1.22 Source Normalized Impact per Paper (SNIP) I 1.032 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The effects of graphene and mesenchymal stem cells in cutaneous wound healing and their putative action mechanism

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study provides a review of the therapeutic potential of graphene dressing scaffolds and mesenchymal stem cells (MSCs) and their synergistic effects with respect to cutaneous wound healing. This study also considers their putative action mechanism based on the antibacterial, immunomodulating, angiogenic, matrix remodeling effects of materials belonging to the graphene family and MSCs during the wound healing process. In addition, this study discusses the cytocompatibility of graphene, its uses as a platform for skin substitutes, the properties it possesses with respect to providing protection against microbial invasion as well as strategies aimed at minimizing the chance of the occurrence of sepsis. MSCs are capable of secreting several factors that exert a therapeutic impact on reparative processes and tissue regeneration. In light of experiments conducted to date, graphene combined with MSCs appears to have the potential to enhance both the wound healing process and infection control at the injury site.

          Most cited references130

          • Record: found
          • Abstract: found
          • Article: not found

          Studying disorder in graphite-based systems by Raman spectroscopy.

          Raman spectroscopy has historically played an important role in the structural characterization of graphitic materials, in particular providing valuable information about defects, stacking of the graphene layers and the finite sizes of the crystallites parallel and perpendicular to the hexagonal axis. Here we review the defect-induced Raman spectra of graphitic materials from both experimental and theoretical standpoints and we present recent Raman results on nanographites and graphenes. The disorder-induced D and D' Raman features, as well as the G'-band (the overtone of the D-band which is always observed in defect-free samples), are discussed in terms of the double-resonance (DR) Raman process, involving phonons within the interior of the 1st Brillouin zone of graphite and defects. In this review, experimental results for the D, D' and G' bands obtained with different laser lines, and in samples with different crystallite sizes and different types of defects are presented and discussed. We also present recent advances that made possible the development of Raman scattering as a tool for very accurate structural analysis of nano-graphite, with the establishment of an empirical formula for the in- and out-of-plane crystalline size and even fancier Raman-based information, such as for the atomic structure at graphite edges, and the identification of single versus multi-graphene layers. Once established, this knowledge provides a powerful machinery to understand newer forms of sp(2) carbon materials, such as the recently developed pitch-based graphitic foams. Results for the calculated Raman intensity of the disorder-induced D-band in graphitic materials as a function of both the excitation laser energy (E(laser)) and the in-plane size (L(a)) of nano-graphites are presented and compared with experimental results. The status of this research area is assessed, and opportunities for future work are identified.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transfer of large-area graphene films for high-performance transparent conductive electrodes.

            Graphene, a two-dimensional monolayer of sp(2)-bonded carbon atoms, has been attracting great interest due to its unique transport properties. One of the promising applications of graphene is as a transparent conductive electrode owing to its high optical transmittance and conductivity. In this paper, we report on an improved transfer process of large-area graphene grown on Cu foils by chemical vapor deposition. The transferred graphene films have high electrical conductivity and high optical transmittance that make them suitable for transparent conductive electrode applications. The improved transfer processes will also be of great value for the fabrication of electronic devices such as field effect transistor and bilayer pseudospin field effect transistor devices.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Epitaxial graphene on ruthenium.

              Graphene has been used to explore the fascinating electronic properties of ideal two-dimensional carbon, and shows great promise for quantum device architectures. The primary method for isolating graphene, micromechanical cleavage of graphite, is difficult to scale up for applications. Epitaxial growth is an attractive alternative, but achieving large graphene domains with uniform thickness remains a challenge, and substrate bonding may strongly affect the electronic properties of epitaxial graphene layers. Here, we show that epitaxy on Ru(0001) produces arrays of macroscopic single-crystalline graphene domains in a controlled, layer-by-layer fashion. Whereas the first graphene layer indeed interacts strongly with the metal substrate, the second layer is almost completely detached, shows weak electronic coupling to the metal, and hence retains the inherent electronic structure of graphene. Our findings demonstrate a route towards rational graphene synthesis on transition-metal templates for applications in electronics, sensing or catalysis.
                Bookmark

                Author and article information

                Journal
                Int J Nanomedicine
                Int J Nanomedicine
                International Journal of Nanomedicine
                International Journal of Nanomedicine
                Dove Medical Press
                1176-9114
                1178-2013
                2019
                01 April 2019
                : 14
                : 2281-2299
                Affiliations
                [1 ]Department of Animal Environment Biology, Faculty of Animal Science, Warsaw University of Life Sciences, Warsaw, Poland
                [2 ]Department of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
                [3 ]Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
                [4 ]Department of Morphological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland, michal_skibniewski@ 123456sggw.pl
                [5 ]Faculty of Physics, Warsaw University of Technology, Warsaw, Poland
                [6 ]Institute of Pathological Physiology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic, marie.kalbacova@ 123456lf1.cuni.cz
                [7 ]Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic, marie.kalbacova@ 123456lf1.cuni.cz
                Author notes
                Correspondence: Michał Skibniewski, Department of Morphological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland, Email michal_skibniewski@ 123456sggw.pl
                Marie Hubalek Kalbacova, Institute of Pathological Physiology, 1st Faculty of Medicine, Charles University, U Nemocnice 5, 128 53 Prague, Czech Republic, Email marie.kalbacova@ 123456lf1.cuni.cz
                Article
                ijn-14-2281
                10.2147/IJN.S190928
                6448540
                6fca9d39-b3f0-4688-a2bf-6568351654c8
                © 2019 Lasocka et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Review

                Molecular medicine
                graphene,mesenchymal stem cells,wound,healing
                Molecular medicine
                graphene, mesenchymal stem cells, wound, healing

                Comments

                Comment on this article