26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Theta oscillations in somata and dendrites of hippocampal pyramidal cells in vivo: Activity-dependent phase-precession of action potentials

      , , ,
      Hippocampus
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Theta frequency field oscillation reflects synchronized synaptic potentials that entrain the discharge of neuronal populations within the approximately 100-200 ms range. The cellular-synaptic generation of theta activity in the hippocampus was investigated by intracellular recordings from the somata and dendrites of CA1 pyramidal cells in urethane-anesthetized rats. The recorded neurons were verified by intracellular injection of biocytin. Transition from non-theta to theta state was characterized by a large decrease in the input resistance of the neuron (39% in the soma), tonic somatic hyperpolarization and dendritic depolarization. The probability of pyramidal cell discharge, as measured in single cells and from a population of extracellularly recorded units, was highest at or slightly after the negative peak of the field theta recorded from the pyramidal layer. In contrast, cyclic depolarizations in dendrites corresponded to the positive phase of the pyramidal layer field theta (i.e. the hyperpolarizing phase of somatic theta). Current-induced depolarization of the dendrite triggered large amplitude slow spikes (putative Ca2+ spikes) which were phase-locked to the positive phase of field theta. In the absence of background theta, strong dendritic depolarization by current injection led to large amplitude, self-sustained oscillation in the theta frequency range. Depolarization of the neuron resulted in a voltage-dependent phase precession of the action potentials. The voltage-dependent phase-precession was replicated by a two-compartment conductance model. Using an active (bursting) dendritic compartment spike phase advancement of action potentials, relative to the somatic theta rhythm, occurred up to 360 degrees. These data indicate that distal dendritic depolarization of the pyramidal cell by the entorhinal input during theta overlaps in time with somatic hyperpolarization. As a result, most pyramidal cells are either silent or discharge with single spikes on the negative portion of local field theta (i.e., when the somatic region is least polarized). However, strong dendritic excitation may overcome perisomatic inhibition and the large depolarizing theta rhythm in the dendrites may induce spike bursts at an earlier phase of the extracellular theta cycle. The magnitude of dendritic depolarization is reflected by the timing of action potentials within the theta cycle. We hypothesize that the competition between the out-of-phase theta oscillation in the soma and dendrite is responsible for the advancement of spike discharges observed in the behaving animal.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Gamma (40-100 Hz) oscillation in the hippocampus of the behaving rat.

          The cellular generation and spatial distribution of gamma frequency (40-100 Hz) activity was examined in the hippocampus of the awake rat. Field potentials and unit activity were recorded by multiple site silicon probes (5- and 16-site shanks) and wire electrode arrays. Gamma waves were highly coherent along the long axis of the dentate hilus, but average coherence decreased rapidly in the CA3 and CA1 directions. Analysis of short epochs revealed large fluctuations in coherence values between the dentate and CA1 gamma waves. Current source density analysis revealed large sinks and sources in the dentate gyrus with spatial distribution similar to the dipoles evoked by stimulation of the perforant path. The frequency changes of gamma and theta waves positively correlated (40-100 Hz and 5-10 Hz, respectively). Putative interneurons in the dentate gyrus discharged at gamma frequency and were phase-locked to the ascending part of the gamma waves recorded from the hilus. Following bilateral lesion of the entorhinal cortex the power and frequency of hilar gamma activity significantly decreased or disappeared. Instead, a large amplitude but slower gamma pattern (25-50 Hz) emerged in the CA3-CA1 network. We suggest that gamma oscillation emerges from an interaction between intrinsic oscillatory properties of interneurons and the network properties of the dentate gyrus. We also hypothesize that under physiological conditions the hilar gamma oscillation may be entrained by the entorhinal rhythm and that gamma oscillation in the CA3-CA1 circuitry is suppressed by either the hilar region or the entorhinal cortex.
            • Record: found
            • Abstract: found
            • Article: not found

            Temporal structure in spatially organized neuronal ensembles: a role for interneuronal networks.

            Network oscillations are postulated to be instrumental for synchronizing the activity of anatomically distributed populations of neurons. Results from recent studies on the physiology of cortical interneurons suggest that through their interconnectivity, they can maintain large-scale oscillations at various frequencies (4-12 Hz, 40-100 Hz and 200 Hz). We suggest that networks of inhibitory interneurons within the forebrain impose co-ordinated oscillatory 'contexts' for the 'content' carried by networks of principal cells. These oscillating inhibitory networks may provide the precise temporal structure necessary for ensembles of neurons to perform specific functions, including sensory binding and memory formation.
              • Record: found
              • Abstract: found
              • Article: not found

              Gamma oscillations in the entorhinal cortex of the freely behaving rat.

              Gamma frequency field oscillations (40-100 Hz) are nested within theta oscillations in the dentate-hilar and CA1-CA3 regions of the hippocampus during exploratory behaviors. These oscillations reflect synchronized synaptic potentials that entrain the discharge of neuronal populations within the approximately 10-25 msec range. Using multisite recordings in freely behaving rats, we examined gamma oscillations within the superficial layers (I-III) of the entorhinal cortex. These oscillations increased in amplitude and regularity in association with entorhinal theta waves. Gamma waves showed an amplitude minimum and reversed in phase near the perisomatic region of layer II, indicating that they represent synchronized synaptic potentials impinging on layer II-III neurons. Theta and gamma oscillations in the entorhinal cortex were coupled with theta and gamma oscillations in the dentate hilar region. The majority of layer II-III neurons discharged irregularly but were phase-related to the negative peak of the local (layer II-III) gamma field oscillation. These findings demonstrate that layer II-III neurons discharge in temporally defined gamma windows (approximately 10-25 msec) coupled to the theta cycle. This transient temporal framework, which emerges in both the entorhinal cortex and the hippocampus, may allow spatially distributed subpopulations to form temporally defined ensembles. We speculate that the theta-gamma pattern in the discharge of these neurons is essential for effective neuronal communication and synaptic plasticity in the perforant pathway.

                Author and article information

                Journal
                Hippocampus
                Hippocampus
                Wiley
                10509631
                1998
                December 07 1998
                : 8
                : 3
                : 244-261
                Article
                10.1002/(SICI)1098-1063(1998)8:3<244::AID-HIPO7>3.0.CO;2-J
                9662139
                6fcd4f7b-9c8a-4ed6-8bdb-eac32423f300
                © 1998

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article

                Related Documents Log