13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Gut microbiota composition and functional changes in inflammatory bowel disease and irritable bowel syndrome

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Changes in the gut microbiota have been associated with two of the most common gastrointestinal diseases, inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS). Here, we performed a case-control analysis using shotgun metagenomic sequencing of stool samples from 1792 individuals with IBD and IBS compared with control individuals in the general population. Despite substantial overlap between the gut microbiome of patients with IBD and IBS compared with control individuals, we were able to use gut microbiota composition differences to distinguish patients with IBD from those with IBS. By combining species-level profiles and strain-level profiles with bacterial growth rates, metabolic functions, antibiotic resistance, and virulence factor analyses, we identified key bacterial species that may be involved in two common gastrointestinal diseases.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: not found
          • Article: not found

          Inflammatory bowel disease.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The comprehensive antibiotic resistance database.

            The field of antibiotic drug discovery and the monitoring of new antibiotic resistance elements have yet to fully exploit the power of the genome revolution. Despite the fact that the first genomes sequenced of free living organisms were those of bacteria, there have been few specialized bioinformatic tools developed to mine the growing amount of genomic data associated with pathogens. In particular, there are few tools to study the genetics and genomics of antibiotic resistance and how it impacts bacterial populations, ecology, and the clinic. We have initiated development of such tools in the form of the Comprehensive Antibiotic Research Database (CARD; http://arpcard.mcmaster.ca). The CARD integrates disparate molecular and sequence data, provides a unique organizing principle in the form of the Antibiotic Resistance Ontology (ARO), and can quickly identify putative antibiotic resistance genes in new unannotated genome sequences. This unique platform provides an informatic tool that bridges antibiotic resistance concerns in health care, agriculture, and the environment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microbiota-mediated colonization resistance against intestinal pathogens.

              Commensal bacteria inhabit mucosal and epidermal surfaces in mice and humans, and have effects on metabolic and immune pathways in their hosts. Recent studies indicate that the commensal microbiota can be manipulated to prevent and even to cure infections that are caused by pathogenic bacteria, particularly pathogens that are broadly resistant to antibiotics, such as vancomycin-resistant Enterococcus faecium, Gram-negative Enterobacteriaceae and Clostridium difficile. In this Review, we discuss how immune- mediated colonization resistance against antibiotic-resistant intestinal pathogens is influenced by the composition of the commensal microbiota. We also review recent advances characterizing the ability of different commensal bacterial families, genera and species to restore colonization resistance to intestinal pathogens in antibiotic-treated hosts.
                Bookmark

                Author and article information

                Journal
                Science Translational Medicine
                Sci. Transl. Med.
                American Association for the Advancement of Science (AAAS)
                1946-6234
                1946-6242
                December 19 2018
                December 19 2018
                December 19 2018
                December 19 2018
                : 10
                : 472
                : eaap8914
                Article
                10.1126/scitranslmed.aap8914
                30567928
                6fd6e63e-ffde-4cec-bc72-83d4af68bb61
                © 2018

                http://www.sciencemag.org/about/science-licenses-journal-article-reuse

                History

                Comments

                Comment on this article