3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Long noncoding RNA LERFS negatively regulates rheumatoid synovial aggression and proliferation

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d2095476e243">Fibroblast-like synoviocytes (FLSs) are critical to synovial aggression and joint destruction in rheumatoid arthritis (RA). The role of long noncoding RNAs (lncRNAs) in RA is largely unknown. Here, we identified a lncRNA, LERFS ( <span style="text-decoration: underline">l</span>owly <span style="text-decoration: underline">e</span>xpressed in <span style="text-decoration: underline">r</span>heumatoid <span style="text-decoration: underline">f</span>ibroblast-like <span style="text-decoration: underline">s</span>ynoviocytes), that negatively regulates the migration, invasion, and proliferation of FLSs through interaction with heterogeneous nuclear ribonucleoprotein Q (hnRNP Q). Under healthy conditions, by binding to the mRNA of RhoA, Rac1, and CDC42 — the small GTPase proteins that control the motility and proliferation of FLSs — the LERFS–hnRNP Q complex decreased the stability or translation of target mRNAs and downregulated their protein levels. But in RA FLSs, decreased LERFS levels induced a reduction of the LERFS–hnRNP Q complex, which reduced the binding of hnRNP Q to target mRNA and therefore increased the stability or translation of target mRNA. These findings suggest that a decrease in synovial LERFS may contribute to synovial aggression and joint destruction in RA and that targeting the lncRNA LERFS may have therapeutic potential in patients with RA. </p>

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Long noncoding RNA as modular scaffold of histone modification complexes.

          Long intergenic noncoding RNAs (lincRNAs) regulate chromatin states and epigenetic inheritance. Here, we show that the lincRNA HOTAIR serves as a scaffold for at least two distinct histone modification complexes. A 5' domain of HOTAIR binds polycomb repressive complex 2 (PRC2), whereas a 3' domain of HOTAIR binds the LSD1/CoREST/REST complex. The ability to tether two distinct complexes enables RNA-mediated assembly of PRC2 and LSD1 and coordinates targeting of PRC2 and LSD1 to chromatin for coupled histone H3 lysine 27 methylation and lysine 4 demethylation. Our results suggest that lincRNAs may serve as scaffolds by providing binding surfaces to assemble select histone modification enzymes, thereby specifying the pattern of histone modifications on target genes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Synovial fibroblasts: key players in rheumatoid arthritis.

            Rheumatoid arthritis (RA) is a chronic autoimmune-disease of unknown origin that primarily affects the joints and ultimately leads to their destruction. The involvement of immune cells is a general hallmark of autoimmune-related disorders. In this regard, macrophages, T cells and their respective cytokines play a pivotal role in RA. However, the notion that RA is a primarily T-cell-dependent disease has been strongly challenged during recent years. Rather, it has been understood that resident, fibroblast-like cells contribute significantly to the perpetuation of disease, and that they may even play a role in its initiation. These rheumatoid arthritis synovial fibroblasts (RASFs) constitute a quite unique cell type that distinguishes RA from other inflammatory conditions of the joints. A number of studies have demonstrated that RASFs show alterations in morphology and behaviour, including molecular changes in signalling cascades, apoptosis responses and in the expression of adhesion molecules as well as matrix-degrading enzymes. These changes appear to reflect a stable activation of RASFs, which occurs independently of continuous exogenous stimulation. As a consequence, RASFs are no longer considered passive bystanders but active players in the complex intercellular network of RA.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human β cell transcriptome analysis uncovers lncRNAs that are tissue-specific, dynamically regulated, and abnormally expressed in type 2 diabetes.

              A significant portion of the genome is transcribed as long noncoding RNAs (lncRNAs), several of which are known to control gene expression. The repertoire and regulation of lncRNAs in disease-relevant tissues, however, has not been systematically explored. We report a comprehensive strand-specific transcriptome map of human pancreatic islets and β cells, and uncover >1100 intergenic and antisense islet-cell lncRNA genes. We find islet lncRNAs that are dynamically regulated and show that they are an integral component of the β cell differentiation and maturation program. We sequenced the mouse islet transcriptome and identify lncRNA orthologs that are regulated like their human counterparts. Depletion of HI-LNC25, a β cell-specific lncRNA, downregulated GLIS3 mRNA, thus exemplifying a gene regulatory function of islet lncRNAs. Finally, selected islet lncRNAs were dysregulated in type 2 diabetes or mapped to genetic loci underlying diabetes susceptibility. These findings reveal a new class of islet-cell genes relevant to β cell programming and diabetes pathophysiology. Copyright © 2012 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Journal of Clinical Investigation
                American Society for Clinical Investigation
                0021-9738
                1558-8238
                October 1 2018
                October 1 2018
                October 1 2018
                September 10 2018
                September 10 2018
                October 1 2018
                : 128
                : 10
                : 4510-4524
                Article
                10.1172/JCI97965
                6159954
                30198906
                6fd6ffc2-67e4-4e34-a93b-7c3f9e58a079
                © 2018
                History

                Comments

                Comment on this article