5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Biomimetic Natural Killer Membrane Camouflaged Polymeric Nanoparticle for Targeted Bioimaging

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform.

          Efforts to extend nanoparticle residence time in vivo have inspired many strategies in particle surface modifications to bypass macrophage uptake and systemic clearance. Here we report a top-down biomimetic approach in particle functionalization by coating biodegradable polymeric nanoparticles with natural erythrocyte membranes, including both membrane lipids and associated membrane proteins for long-circulating cargo delivery. The structure, size and surface zeta potential, and protein contents of the erythrocyte membrane-coated nanoparticles were verified using transmission electron microscopy, dynamic light scattering, and gel electrophoresis, respectively. Mice injections with fluorophore-loaded nanoparticles revealed superior circulation half-life by the erythrocyte-mimicking nanoparticles as compared to control particles coated with the state-of-the-art synthetic stealth materials. Biodistribution study revealed significant particle retention in the blood 72 h following the particle injection. The translocation of natural cellular membranes, their associated proteins, and the corresponding functionalities to the surface of synthetic particles represents a unique approach in nanoparticle functionalization.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cancer Cell Membrane-Coated Nanoparticles for Anticancer Vaccination and Drug Delivery

            Cell-derived nanoparticles have been garnering increased attention due to their ability to mimic many of the natural properties displayed by their source cells. This top-down engineering approach can be applied toward the development of novel therapeutic strategies owing to the unique interactions enabled through the retention of complex antigenic information. Herein, we report on the biological functionalization of polymeric nanoparticles with a layer of membrane coating derived from cancer cells. The resulting core–shell nanostructures, which carry the full array of cancer cell membrane antigens, offer a robust platform with applicability toward multiple modes of anticancer therapy. We demonstrate that by coupling the particles with an immunological adjuvant, the resulting formulation can be used to promote a tumor-specific immune response for use in vaccine applications. Moreover, we show that by taking advantage of the inherent homotypic binding phenomenon frequently observed among tumor cells the membrane functionalization allows for a unique cancer targeting strategy that can be utilized for drug delivery applications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Liposomes Coated with Isolated Macrophage Membrane Can Target Lung Metastasis of Breast Cancer.

              Cancer metastasis leads to high mortality of breast cancer and is difficult to treat because of the poor delivery efficiency of drugs. Herein, we report the wrapping of a drug-carrying liposome with an isolated macrophage membrane to improve delivery to metastatic sites. The macrophage membrane decoration increased cellular uptake of the emtansine liposome in metastatic 4T1 breast cancer cells and had inhibitory effects on cell viability. In vivo, the macrophage membrane enabled the liposome to target metastatic cells and produced a notable inhibitory effect on lung metastasis of breast cancer. Our results provide a biomimetic strategy via the biological properties of macrophages to enhance the medical performance of a nanoparticle in vivo for treating cancer metastasis.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Advanced Functional Materials
                Adv. Funct. Mater.
                Wiley
                1616301X
                January 2019
                January 2019
                December 05 2018
                : 29
                : 4
                : 1806817
                Affiliations
                [1 ]Department of Chemistry; Kansas State University; Manhattan KS 66506 USA
                [2 ]Nanotechnology Innovation Center of Kansas State (NICKS); Kansas State University; Manhattan KS 66506 USA
                [3 ]Department of Anatomy and Physiology; Kansas State University; Manhattan KS 66506 USA
                [4 ]Department of Mathematics; Kansas State University; Manhattan KS 66506 USA
                [5 ]Institute of Computational Comparative Medicine (ICCM); Kansas State University; Manhattan KS 66506 USA
                Article
                10.1002/adfm.201806817
                6fd89263-92df-4207-b865-b766a8b6960a
                © 2018

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article