18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Middle East Respiratory Syndrome Coronavirus “MERS-CoV”: Current Knowledge Gaps

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          The Middle East respiratory syndrome coronavirus (MERS-CoV) that causes a severe lower respiratory tract infection in humans is now considered a pandemic threat to the Gulf region. Since its discovery in 2012, MERS-CoV has reached 23 countries affecting about 1100 people, including a dozen children, and claiming over 400 lives. Compared to SARS (severe acute respiratory syndrome), MERS-CoV appears to kill more people (40% versus 10%), more quickly, and is especially more severe in those with pre-existing medical conditions. Most MERS-CoV cases (>85%) reported thus far have a history of residence in, or travel to the Middle East. The current epidemiology is characterised by slow and sustained transmission with occasional sparks. The dromedary camel is the intermediate host of MERS-CoV, but the transmission cycle is not fully understood. In this current review, we have briefly summarised the latest information on the epidemiology, clinical features, diagnosis, treatment and prevention of MERS-CoV especially highlighting the knowledge gaps in its transmission dynamics, diagnosis and preventive strategy.

          Related collections

          Most cited references90

          • Record: found
          • Abstract: found
          • Article: not found

          Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia.

          A previously unknown coronavirus was isolated from the sputum of a 60-year-old man who presented with acute pneumonia and subsequent renal failure with a fatal outcome in Saudi Arabia. The virus (called HCoV-EMC) replicated readily in cell culture, producing cytopathic effects of rounding, detachment, and syncytium formation. The virus represents a novel betacoronavirus species. The closest known relatives are bat coronaviruses HKU4 and HKU5. Here, the clinical data, virus isolation, and molecular identification are presented. The clinical picture was remarkably similar to that of the severe acute respiratory syndrome (SARS) outbreak in 2003 and reminds us that animal coronaviruses can cause severe disease in humans.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study

            Summary Background Middle East respiratory syndrome (MERS) is a new human disease caused by a novel coronavirus (CoV). Clinical data on MERS-CoV infections are scarce. We report epidemiological, demographic, clinical, and laboratory characteristics of 47 cases of MERS-CoV infections, identify knowledge gaps, and define research priorities. Methods We abstracted and analysed epidemiological, demographic, clinical, and laboratory data from confirmed cases of sporadic, household, community, and health-care-associated MERS-CoV infections reported from Saudi Arabia between Sept 1, 2012, and June 15, 2013. Cases were confirmed as having MERS-CoV by real-time RT-PCR. Findings 47 individuals (46 adults, one child) with laboratory-confirmed MERS-CoV disease were identified; 36 (77%) were male (male:female ratio 3·3:1). 28 patients died, a 60% case-fatality rate. The case-fatality rate rose with increasing age. Only two of the 47 cases were previously healthy; most patients (45 [96%]) had underlying comorbid medical disorders, including diabetes (32 [68%]), hypertension (16 [34%]), chronic cardiac disease (13 [28%]), and chronic renal disease (23 [49%]). Common symptoms at presentation were fever (46 [98%]), fever with chills or rigors (41 [87%]), cough (39 [83%]), shortness of breath (34 [72%]), and myalgia (15 [32%]). Gastrointestinal symptoms were also frequent, including diarrhoea (12 [26%]), vomiting (ten [21%]), and abdominal pain (eight [17%]). All patients had abnormal findings on chest radiography, ranging from subtle to extensive unilateral and bilateral abnormalities. Laboratory analyses showed raised concentrations of lactate dehydrogenase (23 [49%]) and aspartate aminotransferase (seven [15%]) and thrombocytopenia (17 [36%]) and lymphopenia (16 [34%]). Interpretation Disease caused by MERS-CoV presents with a wide range of clinical manifestations and is associated with substantial mortality in admitted patients who have medical comorbidities. Major gaps in our knowledge of the epidemiology, community prevalence, and clinical spectrum of infection and disease need urgent definition. Funding None.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Hospital Outbreak of Middle East Respiratory Syndrome Coronavirus

              In September 2012, the World Health Organization reported the first cases of pneumonia caused by the novel Middle East respiratory syndrome coronavirus (MERS-CoV). We describe a cluster of health care-acquired MERS-CoV infections. Medical records were reviewed for clinical and demographic information and determination of potential contacts and exposures. Case patients and contacts were interviewed. The incubation period and serial interval (the time between the successive onset of symptoms in a chain of transmission) were estimated. Viral RNA was sequenced. Between April 1 and May 23, 2013, a total of 23 cases of MERS-CoV infection were reported in the eastern province of Saudi Arabia. Symptoms included fever in 20 patients (87%), cough in 20 (87%), shortness of breath in 11 (48%), and gastrointestinal symptoms in 8 (35%); 20 patients (87%) presented with abnormal chest radiographs. As of June 12, a total of 15 patients (65%) had died, 6 (26%) had recovered, and 2 (9%) remained hospitalized. The median incubation period was 5.2 days (95% confidence interval [CI], 1.9 to 14.7), and the serial interval was 7.6 days (95% CI, 2.5 to 23.1). A total of 21 of the 23 cases were acquired by person-to-person transmission in hemodialysis units, intensive care units, or in-patient units in three different health care facilities. Sequencing data from four isolates revealed a single monophyletic clade. Among 217 household contacts and more than 200 health care worker contacts whom we identified, MERS-CoV infection developed in 5 family members (3 with laboratory-confirmed cases) and in 2 health care workers (both with laboratory-confirmed cases). Person-to-person transmission of MERS-CoV can occur in health care settings and may be associated with considerable morbidity. Surveillance and infection-control measures are critical to a global public health response.
                Bookmark

                Author and article information

                Contributors
                Journal
                Paediatr Respir Rev
                Paediatr Respir Rev
                Paediatric Respiratory Reviews
                Elsevier Ltd.
                1526-0542
                1526-0550
                18 April 2015
                June 2015
                18 April 2015
                : 16
                : 3
                : 197-202
                Affiliations
                [a ]National Centre for Immunisation Research and Surveillance of Vaccine Preventable Diseases, The Children's Hospital at Westmead, Westmead, NSW, Australia
                [b ]University of Technology Sydney, School of Medical and Molecular Biosciences, Broadway, Sydney, NSW, Australia
                [c ]Discipline of Paediatrics and Child Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
                [d ]Centre for Perinatal Infection Research, The Children's Hospital at Westmead and The University of Sydney, Sydney, NSW, Australia
                [e ]Marie Bashir Institute for Infectious Diseases and Biosecurity, the University of Sydney, Sydney, NSW, Australia
                Author notes
                [* ]Corresponding author. National Centre for Immunisation Research and Surveillance of Vaccine Preventable Diseases, The Children's Hospital at Westmead, Westmead, NSW, Australia. GouriRani.Banik@ 123456student.uts.edu.au
                Article
                S1526-0542(15)00031-7
                10.1016/j.prrv.2015.04.002
                7106011
                26002405
                6fd8f5d9-077f-468e-8cdf-d3d6cd446577
                Copyright © 2015 Elsevier Ltd. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                Categories
                Article

                dromedary,mers-cov,middle east,respiratory tract infection,sars,transmission chain

                Comments

                Comment on this article

                scite_

                Similar content157

                Cited by32

                Most referenced authors1,890