16
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Complement Factor H-Related Proteins CFHR2 and CFHR5 Represent Novel Ligands for the Infection-Associated CRASP Proteins of Borrelia burgdorferi

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          One virulence property of Borrelia burgdorferi is its resistance to innate immunity, in particular to complement-mediated killing. Serum-resistant B. burgdorferi express up to five distinct complement regulator-acquiring surface proteins (CRASP) which interact with complement regulator factor H (CFH) and factor H-like protein 1 (FHL1) or factor H-related protein 1 (CFHR1). In the present study we elucidate the role of the infection-associated CRASP-3 and CRASP-5 protein to serve as ligands for additional complement regulatory proteins as well as for complement resistance of B. burgdorferi.

          Methodology/Principal Findings

          To elucidate whether CRASP-5 and CRASP-3 interact with various human proteins, both borrelial proteins were immobilized on magnetic beads. Following incubation with human serum, bound proteins were eluted and separated by Glycine-SDS-PAGE. In addition to CFH and CFHR1, complement regulators CFHR2 and CFHR5 were identified as novel ligands for both borrelial proteins by employing MALDI-TOF. To further assess the contributions of CRASP-3 and CRASP-5 to complement resistance, a serum-sensitive B. garinii strain G1 which lacks all CFH-binding proteins was used as a valuable model for functional analyses. Both CRASPs expressed on the B. garinii outer surface bound CFH as well as CFHR1 and CFHR2 in ELISA. In contrast, live B. garinii bound CFHR1, CFHR2, and CFHR5 and only miniscute amounts of CFH as demonstrated by serum adsorption assays and FACS analyses. Further functional analysis revealed that upon NHS incubation, CRASP-3 or CRASP-5 expressing borreliae were killed by complement.

          Conclusions/Significance

          In the absence of CFH and the presence of CFHR1, CFHR2 and CFHR5, assembly and integration of the membrane attack complex was not efficiently inhibited indicating that CFH in co-operation with CFHR1, CFHR2 and CFHR5 supports complement evasion of B. burgdorferi.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: not found

          In-gel digestion of proteins for internal sequence analysis after one- or two-dimensional gel electrophoresis.

          We examined the different steps necessary for the enzymatic digestion of proteins in the polyacrylamide matrix after gel electrophoresis. As a result, we developed an improved method for obtaining peptides for internal sequence analysis from 1-2 micrograms of in-gel-digested proteins. The long washing-lyophilization-equilibration steps necessary to eliminate the dye, sodium dodecyl sulfate, and other gel-associated contaminants that perturb protein digestion in Coomassie blue-stained gels have been replaced by washing for 40 min with 50% acetonitrile, drying for 10 min at room temperature, and then rehydrating with a protease solution. The washing and drying steps result in a substantial reduction of the gel slice volume that, when next swollen in the protease solution, readily absorbs the enzyme, facilitating digestion. The Coomassie blue staining procedure has also been modified by reducing acetic acid and methanol concentrations in the staining solution and by eliminating acetic acid in the destaining solution. The peptides resulting from the in-gel digestion are easily recovered by passive elution, in excellent yields for structural characterization. This simple and rapid method has been successfully applied for the internal sequence analysis of membrane proteins from the rat mitochondria resolved in preparative two-dimensional gel electrophoresis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Factor H-related protein 1 (CFHR-1) inhibits complement C5 convertase activity and terminal complex formation.

            Homozygous deletion of a 84-kb genomic fragment in human chromosome 1 that encompasses the CFHR1 and CFHR3 genes represents a risk factor for hemolytic uremic syndrome (HUS) but has a protective effect in age-related macular degeneration (AMD). Here we identify CFHR1 as a novel inhibitor of the complement pathway that blocks C5 convertase activity and interferes with C5b surface deposition and MAC formation. This activity is distinct from complement factor H, and apparently factor H and CFHR1 control complement activation in a sequential manner. As both proteins bind to the same or similar sites at the cellular surfaces, the gain of CFHR1 activity presumably is at the expense of CFH-mediated function (inhibition of the C3 convertase). In HUS, the absence of CFHR1 may result in reduced inhibition of terminal complex formation and in reduced protection of endothelial cells upon complement attack. These findings provide new insights into complement regulation on the cell surface and biosurfaces and likely define the role of CFHR1 in human diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Factor H family proteins and human diseases.

              Complement is a major defense system of innate immunity and aimed to destroy microbes. One of the central complement regulators is factor H, which belongs to a protein family that includes CFHL1 and five factor H-related (CFHR) proteins. Recent evidence shows that factor H family proteins (factor H and CFHRs) are associated with diverse and severe human diseases and are also used by human pathogenic microbes for complement evasion. Therefore, dissecting the exact functions of the individual CFHR proteins will provide insights into the pathophysiology of such inflammatory and infectious diseases and will define the therapeutic potential of these proteins.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2010
                20 October 2010
                : 5
                : 10
                : e13519
                Affiliations
                [1 ]Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Frankfurt/Main, Germany
                [2 ]Department of Infection Biology, Leibniz-Institute for Natural Products Research and Infection Biology, Jena, Germany
                [3 ]Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Frankfurt/Main, Germany
                [4 ]Institute of Immunology, University of Heidelberg, Heidelberg, Germany
                [5 ]Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, United States of America
                [6 ]Friedrich Schiller University, Jena, Germany
                National Institute of Allergy and Infectious Diseases, National Institutes of Health, United States of America
                Author notes

                Conceived and designed the experiments: CS TH PK. Performed the experiments: CS TH TB. Analyzed the data: CS TH CS TB PFZ PK. Contributed reagents/materials/analysis tools: CS HE BU TB MK RW BS PFZ. Wrote the paper: CS BS PFZ PK.

                Article
                10-PONE-RA-19300R1
                10.1371/journal.pone.0013519
                2958145
                20975954
                6fe8094e-a6ff-4858-af33-57ded6e66757
                Siegel et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 27 May 2010
                : 21 September 2010
                Page count
                Pages: 14
                Categories
                Research Article
                Immunology/Cellular Microbiology and Pathogenesis
                Immunology/Innate Immunity
                Microbiology/Immunity to Infections
                Microbiology/Innate Immunity
                Microbiology/Medical Microbiology
                Infectious Diseases/Bacterial Infections

                Uncategorized
                Uncategorized

                Comments

                Comment on this article