18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Exploring the Brønsted acidity of UiO-66 (Zr, Ce, Hf) metal–organic frameworks for efficient solketal synthesis from glycerol acetalization

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Zr, Ce, Hf-based isostructural UIO-66 MOFs exhibited varying degree of Brønsted acidity (UiO-66(Hf) > UiO-66(Ce) > UiO-66(Zr)) on their secondary building units owing to the differences in their oxophilities.

          Abstract

          Zr, Ce, Hf-based isostructural UIO-66 MOFs exhibited varying degree of Brønsted acidity (UiO-66(Hf) > UiO-66(Ce) > UiO-66(Zr)) on their secondary building units owing to the differences in their oxophilicities. UIO-66(Hf) showed remarkable catalytic activity for solketal synthesis with a turnover frequency as high as 13 886 h −1, which is 90 times higher than that of UiO-66(Zr) and several orders of magnitude higher than that of H 2SO 4 or Zeolites.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Ultrahigh porosity in metal-organic frameworks.

          Crystalline solids with extended non-interpenetrating three-dimensional crystal structures were synthesized that support well-defined pores with internal diameters of up to 48 angstroms. The Zn4O(CO2)6 unit was joined with either one or two kinds of organic link, 4,4',4''-[benzene-1,3,5-triyl-tris(ethyne-2,1-diyl)]tribenzoate (BTE), 4,4',44''-[benzene-1,3,5-triyl-tris(benzene-4,1-diyl)]tribenzoate (BBC), 4,4',44''-benzene-1,3,5-triyl-tribenzoate (BTB)/2,6-naphthalenedicarboxylate (NDC), and BTE/biphenyl-4,4'-dicarboxylate (BPDC), to give four metal-organic frameworks (MOFs), MOF-180, -200, -205, and -210, respectively. Members of this series of MOFs show exceptional porosities and gas (hydrogen, methane, and carbon dioxide) uptake capacities. For example, MOF-210 has Brunauer-Emmett-Teller and Langmuir surface areas of 6240 and 10,400 square meters per gram, respectively, and a total carbon dioxide storage capacity of 2870 milligrams per gram. The volume-specific internal surface area of MOF-210 (2060 square meters per cubic centimeter) is equivalent to the outer surface of nanoparticles (3-nanometer cubes) and near the ultimate adsorption limit for solid materials.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Metal-organic frameworks (MOFs).

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Applications of metal-organic frameworks in heterogeneous supramolecular catalysis.

              This review summarizes the use of metal-organic frameworks (MOFs) as a versatile supramolecular platform to develop heterogeneous catalysts for a variety of organic reactions, especially for liquid-phase reactions. Following a background introduction about catalytic relevance to various metal-organic materials, crystal engineering of MOFs, characterization and evaluation methods of MOF catalysis, we categorize catalytic MOFs based on the types of active sites, including coordinatively unsaturated metal sites (CUMs), metalloligands, functional organic sites (FOS), as well as metal nanoparticles (MNPs) embedded in the cavities. Throughout the review, we emphasize the incidental or deliberate formation of active sites, the stability, heterogeneity and shape/size selectivity for MOF catalysis. Finally, we briefly introduce their relevance into photo- and biomimetic catalysis, and compare MOFs with other typical porous solids such as zeolites and mesoporous silica with regard to their different attributes, and provide our view on future trends and developments in MOF-based catalysis.
                Bookmark

                Author and article information

                Journal
                ICHBD9
                Dalton Transactions
                Dalton Trans.
                Royal Society of Chemistry (RSC)
                1477-9226
                1477-9234
                January 15 2019
                2019
                : 48
                : 3
                : 843-847
                Affiliations
                [1 ]Materials Science Division
                [2 ]Poornaprajna Institute of Scientific Research
                [3 ]Bangalore Rural- 562164
                [4 ]India
                [5 ]Manipal Academy of Higher Education
                Article
                10.1039/C8DT03512A
                6ff81bed-f9ca-4226-85a5-e21779c769a8
                © 2019

                http://rsc.li/journals-terms-of-use

                History

                Comments

                Comment on this article