12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An Escherichia coli ST131 pangenome atlas reveals population structure and evolution across 4,071 isolates

      research-article
      1 , 2 , 1 ,
      Scientific Reports
      Nature Publishing Group UK
      Evolution, Genetics, Microbiology

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Escherichia coli ST131 is a major cause of infection with extensive antimicrobial resistance (AMR) facilitated by widespread beta-lactam antibiotic use. This drug pressure has driven extended-spectrum beta-lactamase (ESBL) gene acquisition and evolution in pathogens, so a clearer resolution of ST131’s origin, adaptation and spread is essential. E. coli ST131’s ESBL genes are typically embedded in mobile genetic elements (MGEs) that aid transfer to new plasmid or chromosomal locations, which are mobilised further by plasmid conjugation and recombination, resulting in a flexible ESBL, MGE and plasmid composition with a conserved core genome. We used population genomics to trace the evolution of AMR in ST131 more precisely by extracting all available high-quality Illumina HiSeq read libraries to investigate 4,071 globally-sourced genomes, the largest ST131 collection examined so far. We applied rigorous quality-control, genome de novo assembly and ESBL gene screening to resolve ST131’s population structure across three genetically distinct Clades (A, B, C) and abundant subclades from the dominant Clade C. We reconstructed their evolutionary relationships across the core and accessory genomes using published reference genomes, long read assemblies and k-mer-based methods to contextualise pangenome diversity. The three main C subclades have co-circulated globally at relatively stable frequencies over time, suggesting attaining an equilibrium after their origin and initial rapid spread. This contrasted with their ESBL genes, which had stronger patterns across time, geography and subclade, and were located at distinct locations across the chromosomes and plasmids between isolates. Within the three C subclades, the core and accessory genome diversity levels were not correlated due to plasmid and MGE activity, unlike patterns between the three main clades, A, B and C. This population genomic study highlights the dynamic nature of the accessory genomes in ST131, suggesting that surveillance should anticipate genetically variable outbreaks with broader antibiotic resistance levels. Our findings emphasise the potential of evolutionary pangenomics to improve our understanding of AMR gene transfer, adaptation and transmission to discover accessory genome changes linked to novel subtypes.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          The microbial pan-genome.

          A decade after the beginning of the genomic era, the question of how genomics can describe a bacterial species has not been fully addressed. Experimental data have shown that in some species new genes are discovered even after sequencing the genomes of several strains. Mathematical modeling predicts that new genes will be discovered even after sequencing hundreds of genomes per species. Therefore, a bacterial species can be described by its pan-genome, which is composed of a "core genome" containing genes present in all strains, and a "dispensable genome" containing genes present in two or more strains and genes unique to single strains. Given that the number of unique genes is vast, the pan-genome of a bacterial species might be orders of magnitude larger than any single genome.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli.

            We present the complete genome sequence of uropathogenic Escherichia coli, strain CFT073. A three-way genome comparison of the CFT073, enterohemorrhagic E. coli EDL933, and laboratory strain MG1655 reveals that, amazingly, only 39.2% of their combined (nonredundant) set of proteins actually are common to all three strains. The pathogen genomes are as different from each other as each pathogen is from the benign strain. The difference in disease potential between O157:H7 and CFT073 is reflected in the absence of genes for type III secretion system or phage- and plasmid-encoded toxins found in some classes of diarrheagenic E. coli. The CFT073 genome is particularly rich in genes that encode potential fimbrial adhesins, autotransporters, iron-sequestration systems, and phase-switch recombinases. Striking differences exist between the large pathogenicity islands of CFT073 and two other well-studied uropathogenic E. coli strains, J96 and 536. Comparisons indicate that extraintestinal pathogenic E. coli arose independently from multiple clonal lineages. The different E. coli pathotypes have maintained a remarkable synteny of common, vertically evolved genes, whereas many islands interrupting this common backbone have been acquired by different horizontal transfer events in each strain.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              CTX-M Enzymes: Origin and Diffusion

              CTX-M β-lactamases are considered a paradigm in the evolution of a resistance mechanism. Incorporation of different chromosomal bla CTX-M related genes from different species of Kluyvera has derived in different CTX-M clusters. In silico analyses have shown that this event has occurred at least nine times; in CTX-M-1 cluster (3), CTX-M-2 and CTX-M-9 clusters (2 each), and CTX-M-8 and CTX-M-25 clusters (1 each). This has been mainly produced by the participation of genetic mobilization units such as insertion sequences (ISEcp1 or ISCR1) and the later incorporation in hierarchical structures associated with multifaceted genetic structures including complex class 1 integrons and transposons. The capture of these bla CTX-M genes from the environment by highly mobilizable structures could have been a random event. Moreover, after incorporation within these structures, β-lactam selective force such as that exerted by cefotaxime and ceftazidime has fueled mutational events underscoring diversification of different clusters. Nevertheless, more variants of CTX-M enzymes, including those not inhibited by β-lactamase inhibitors such as clavulanic acid (IR-CTX-M variants), only obtained under in in vitro experiments, are still waiting to emerge in the clinical setting. Penetration and the later global spread of CTX-M producing organisms have been produced with the participation of the so-called “epidemic resistance plasmids” often carried in multi-drug resistant and virulent high-risk clones. All these facts but also the incorporation and co-selection of emerging resistance determinants within CTX-M producing bacteria, such as those encoding carbapenemases, depict the currently complex pandemic scenario of multi-drug resistant isolates.
                Bookmark

                Author and article information

                Contributors
                tim.downing@dcu.ie
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                22 November 2019
                22 November 2019
                2019
                : 9
                : 17394
                Affiliations
                [1 ]ISNI 0000000102380260, GRID grid.15596.3e, School of Biotechnology, , Dublin City University, ; Dublin, Ireland
                [2 ]ISNI 0000 0001 0721 1626, GRID grid.11914.3c, Present Address: School of Medicine, , University of, ; St. Andrews, UK
                Article
                54004
                10.1038/s41598-019-54004-5
                6874702
                31758048
                6ffef0b4-fec3-4575-9d03-1d455dcd6256
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 6 August 2019
                : 4 November 2019
                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                Uncategorized
                evolution,genetics,microbiology
                Uncategorized
                evolution, genetics, microbiology

                Comments

                Comment on this article