48
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Signaling Cross Talk between TGF-β/Smad and Other Signaling Pathways

      review-article
      Cold Spring Harbor Perspectives in Biology
      Cold Spring Harbor Laboratory Press

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cytokines of the transforming growth factor β (TGF-β) family, including TGF-βs, bone morphogenic proteins (BMPs), activins, and Nodal, play crucial roles in embryonic development and adult tissue homeostasis by regulating cell proliferation, survival, and differentiation, as well as stem-cell self-renewal and lineage-specific differentiation. Smad proteins are critical downstream mediators of these signaling activities. In addition to regulating the transcription of direct target genes of TGF-β, BMP, activin, or Nodal, Smad proteins also participate in extensive cross talk with other signaling pathways, often in a cell-type- or developmental stage-specific manner. These combinatorial signals often produce context-, time-, and location-dependent biological outcomes that are critical for development. This review discusses recent progress in our understanding of the cross talk between Smad proteins and signaling pathways of Wnt, Notch, Hippo, Hedgehog (Hh), mitogen-activated protein (MAP), kinase, phosphoinositide 3-kinase (PI3K)-Akt, nuclear factor κB (NF-κB), and Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathways.

          Abstract

          Smad proteins transduce signals directly from TGF-β ligands to the nucleus. In addition, Smads participate in cross talk with other signaling pathways (e.g., Wnt), often in a cell type- or developmental stage-specific manner.

          Related collections

          Most cited references150

          • Record: found
          • Abstract: found
          • Article: not found

          FGF stimulation of the Erk1/2 signalling cascade triggers transition of pluripotent embryonic stem cells from self-renewal to lineage commitment.

          Pluripotent embryonic stem (ES) cells must select between alternative fates of self-replication and lineage commitment during continuous proliferation. Here, we delineate the role of autocrine production of fibroblast growth factor 4 (Fgf4) and associated activation of the Erk1/2 (Mapk3/1) signalling cascade. Fgf4 is the major stimulus activating Erk in mouse ES cells. Interference with FGF or Erk activity using chemical inhibitors or genetic ablations does not impede propagation of undifferentiated ES cells. Instead, such manipulations restrict the ability of ES cells to commit to differentiation. ES cells lacking Fgf4 or treated with FGF receptor inhibitors resist neural and mesodermal induction, and are refractory to BMP-induced non-neural differentiation. Lineage commitment potential of Fgf4-null cells is restored by provision of FGF protein. Thus, FGF enables rather than antagonises the differentiation activity of BMP. The key downstream role of Erk signalling is revealed by examination of Erk2-null ES cells, which fail to undergo either neural or mesodermal differentiation in adherent culture, and retain expression of pluripotency markers Oct4, Nanog and Rex1. These findings establish that Fgf4 stimulation of Erk1/2 is an autoinductive stimulus for naïve ES cells to exit the self-renewal programme. We propose that the Erk cascade directs transition to a state that is responsive to inductive cues for germ layer segregation. Consideration of Erk signalling as a primary trigger that potentiates lineage commitment provides a context for reconciling disparate views on the contribution of FGF and BMP pathways during germ layer specification in vertebrate embryos.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification of a member of the MAPKKK family as a potential mediator of TGF-beta signal transduction.

            The mitogen-activated protein kinase (MAPK) pathway is a conserved eukaryotic signaling module that converts receptor signals into various outputs. MAPK is activated through phosphorylation by MAPK kinase (MAPKK), which is first activated by MAPKK kinase (MAPKKK). A genetic selection based on a MAPK pathway in yeast was used to identify a mouse protein kinase (TAK1) distinct from other members of the MAPKKK family. TAK1 was shown to participate in regulation of transcription by transforming growth factor-beta (TGF-beta). Furthermore, kinase activity of TAK1 was stimulated in response to TGF-beta and bone morphogenetic protein. These results suggest that TAK1 functions as a mediator in the signaling pathway of TGF-beta superfamily members.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Master transcription factors determine cell-type-specific responses to TGF-β signaling.

              Transforming growth factor beta (TGF-β) signaling, mediated through the transcription factors Smad2 and Smad3 (Smad2/3), directs different responses in different cell types. Here we report that Smad3 co-occupies the genome with cell-type-specific master transcription factors. Thus, Smad3 occupies the genome with Oct4 in embryonic stem cells (ESCs), Myod1 in myotubes, and PU.1 in pro-B cells. We find that these master transcription factors are required for Smad3 occupancy and that TGF-β signaling largely affects the genes bound by the master transcription factors. Furthermore, we show that induction of Myod1 in nonmuscle cells is sufficient to redirect Smad3 to Myod1 sites. We conclude that cell-type-specific master transcription factors determine the genes bound by Smad2/3 and are thus responsible for orchestrating the cell-type-specific effects of TGF-β signaling. Copyright © 2011 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Cold Spring Harb Perspect Biol
                Cold Spring Harb Perspect Biol
                cshperspect
                cshperspect
                Cold Spring Harbor Perspectives in Biology
                Cold Spring Harbor Laboratory Press
                1943-0264
                January 2017
                : 9
                : 1
                : a022137
                Affiliations
                Department of Molecular and Cell Biology, University of California, Berkeley, and Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
                Author notes
                Article
                PMC5204325 PMC5204325 5204325 a022137
                10.1101/cshperspect.a022137
                5204325
                27836834
                70065d70-44c8-42b0-ac5c-74416ce1067e
                Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved
                History
                Page count
                Pages: 28
                Categories
                088
                PERSPECTIVES
                Cell Signaling

                Comments

                Comment on this article