1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Phenotypic Plasticity in Bud Fruitfulness Expressed in Two Distinct Wine Grape Cultivars Grown under Three Different Pedoclimatic Conditions

      , , , , ,
      Agriculture
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The effects of interactions between the genotype and environmental conditions are expressed in the phenotype. Comparing the performances of genotypes under the same range of environmental conditions allows for relative measurements to be made of the different levels of plasticity among those genotypes. The objective of this research was to evaluate the different responses of two wine grape cultivars, native Aglianico and international Cabernet Sauvignon, under different pedoclimatic conditions in terms of the functional traits that govern grapevine bud fruitfulness, vegetative growth, and yield development. The study was conducted over two consecutive seasons (2020 and 2021), in six commercial Vitis vinifera L. vineyards, located in three distinct viticultural regions of central-southern Italy (Molise, Campania, and Sicily). In each experimental vineyard, the bud fruitfulness, number of leaves, total leaf area per vine, midday vine water status, and fruit yield were measured. The obtained results showed that bud fruitfulness was higher for Aglianico than for Cabernet Sauvignon in each experimental site, while the variability of plant responses between the vineyards was lower for Cabernet Sauvignon cultivar compared to those for Aglianico. The genetic × environmental interactions were expressed predominantly during berry ripening stages, while plasticity was generally greater in Aglianico than in Cabernet Sauvignon.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          Plant phenotypic plasticity in a changing climate.

          Climate change is altering the availability of resources and the conditions that are crucial to plant performance. One way plants will respond to these changes is through environmentally induced shifts in phenotype (phenotypic plasticity). Understanding plastic responses is crucial for predicting and managing the effects of climate change on native species as well as crop plants. Here, we provide a toolbox with definitions of key theoretical elements and a synthesis of the current understanding of the molecular and genetic mechanisms underlying plasticity relevant to climate change. By bringing ecological, evolutionary, physiological and molecular perspectives together, we hope to provide clear directives for future research and stimulate cross-disciplinary dialogue on the relevance of phenotypic plasticity under climate change. Copyright © 2010 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sap Pressure in Vascular Plants: Negative hydrostatic pressure can be measured in plants.

            A method is described which permits measurement of sap pressure in the xylem of vascular plants. As long predicted, sap pressures during transpiration are normally negative, ranging from -4 or -5 atmospheres in a damp forest to -80 atmospheres in the desert. Mangroves and other halophytes maintain at all times a sap pressure of -35 to -60 atmospheres. Mistletoes have greater suction than their hosts, usually by 10 to 20 atmospheres. Diurnal cycles of 10 to 20 atmospheres are common. In tall conifers there is a hydrostatic pressure gradient that closely corresponds to the height and seems surprisingly little influenced by the intensity of transpiration. Sap extruded from the xylem by gas pressure on the leaves is practically pure water. At zero turgor this procedure gives a linear relation between the intracellular concentration and the tension of the xylem.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Maximizing daily canopy photosynthesis with respect to the leaf nitrogen allocation pattern in the canopy

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                ABSGFK
                Agriculture
                Agriculture
                MDPI AG
                2077-0472
                October 2022
                October 10 2022
                : 12
                : 10
                : 1660
                Article
                10.3390/agriculture12101660
                70225535-f229-4ba4-8dda-b3918077adaf
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article