25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Multifaceted functions and roles of HBZ in HTLV-1 pathogenesis

      , ,

      Retrovirology

      BioMed Central

      HTLV-1, HBZ, Tax, Viral oncogenesis, Regulatory T cell

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Human T cell leukemia virus type 1 (HTLV-1) is an oncogenic retrovirus responsible for the development of adult T-cell leukemia (ATL). Although HTLV-1 harbors an oncogene, tax, that transforms T cells in vitro and induces leukemia in transgenic mice, tax expression is frequently disrupted in ATL, making the oncogenesis of ATL a bit mysterious. The HTLV-1 bZIP factor (HBZ) gene was discovered in 2002 and has been found to promote T-cell proliferation and cause lymphoma in transgenic mice. Thus HBZ has become a novel hotspot of HTLV-1 research. This review summarizes the current findings on HBZ with a special focus on its potential links to the oncogenesis of ATL. We propose viewing HBZ as a critical contributing factor in ATL development.

          Related collections

          Most cited references 71

          • Record: found
          • Abstract: found
          • Article: not found

          Human T-cell leukaemia virus type 1 (HTLV-1) infectivity and cellular transformation.

          It has been 30 years since a 'new' leukaemia termed adult T-cell leukaemia (ATL) was described in Japan, and more than 25 years since the isolation of the retrovirus, human T-cell leukaemia virus type 1 (HTLV-1), that causes this disease. We discuss HTLV-1 infectivity and how the HTLV-1 Tax oncoprotein initiates transformation by creating a cellular environment favouring aneuploidy and clastogenic DNA damage. We also explore the contribution of a newly discovered protein and RNA on the HTLV-1 minus strand, HTLV-1 basic leucine zipper factor (HBZ), to the maintenance of virus-induced leukaemia.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            p300/CBP and cancer.

            p300 and cyclic AMP response element-binding protein (CBP) are adenoviral E1A-binding proteins involved in multiple cellular processes, and function as transcriptional co-factors and histone acetyltransferases. Germline mutation of CBP results in Rubinstein-Taybi syndrome, which is characterized by an increased predisposition to childhood malignancies. Furthermore, somatic mutations of p300 and CBP occur in a number of malignancies. Chromosome translocations target CBP and, less commonly, p300 in acute myeloid leukemia and treatment-related hematological disorders. p300 mutations in solid tumors result in truncated p300 protein products or amino-acid substitutions in critical protein domains, and these are often associated with inactivation of the second allele. A mouse model confirms that p300 and CBP function as suppressors of hematological tumor formation. The involvement of these proteins in critical tumorigenic pathways (including TGF-beta, p53 and Rb) provides a mechanistic route as to how their inactivation could result in cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular mechanisms of cellular transformation by HTLV-1 Tax.

              The HTLV Tax protein is crucial for viral replication and for initiating malignant transformation leading to the development of adult T-cell leukemia. Tax has been shown to be oncogenic, since it transforms and immortalizes rodent fibroblasts and human T-lymphocytes. Through CREB, NF-kappaB and SRF pathways Tax transactivates cellular promoters including those of cytokines (IL-13, IL-15), cytokine receptors (IL-2Ralpha) and costimulatory surface receptors (OX40/OX40L) leading to upregulated protein expression and activated signaling cascades (e.g. Jak/STAT, PI3Kinase, JNK). Tax also stimulates cell growth by direct binding to cyclin-dependent kinase holenzymes and/or inactivating tumor suppressors (e.g. p53, DLG). Moreover, Tax silences cellular checkpoints, which guard against DNA structural damage and chromosomal missegregation, thereby favoring the manifestation of a mutator phenotype in cells.
                Bookmark

                Author and article information

                Contributors
                gma@virus.kyoto-u.ac.jp
                jyasunag@virus.kyoto-u.ac.jp
                mmatsuok@virus.kyoto-u.ac.jp
                Journal
                Retrovirology
                Retrovirology
                Retrovirology
                BioMed Central (London )
                1742-4690
                15 March 2016
                15 March 2016
                2016
                : 13
                Affiliations
                Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto, Japan
                Article
                249
                10.1186/s12977-016-0249-x
                4793531
                26979059
                © Ma et al. 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100001691, Japan Society for the Promotion of Science;
                Award ID: 25293219
                Award ID: 26460554
                Award Recipient :
                Categories
                Review
                Custom metadata
                © The Author(s) 2016

                Microbiology & Virology

                htlv-1, hbz, tax, viral oncogenesis, regulatory t cell

                Comments

                Comment on this article