Blog
About

134
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Sequencing and beyond: integrating molecular 'omics' for microbial community profiling.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          High-throughput DNA sequencing has proven invaluable for investigating diverse environmental and host-associated microbial communities. In this Review, we discuss emerging strategies for microbial community analysis that complement and expand traditional metagenomic profiling. These include novel DNA sequencing strategies for identifying strain-level microbial variation and community temporal dynamics; measuring multiple 'omic' data types that better capture community functional activity, such as transcriptomics, proteomics and metabolomics; and combining multiple forms of omic data in an integrated framework. We highlight studies in which the 'multi-omics' approach has led to improved mechanistic models of microbial community structure and function.

          Related collections

          Most cited references 57

          • Record: found
          • Abstract: found
          • Article: not found

          Community structure and metabolism through reconstruction of microbial genomes from the environment.

          Microbial communities are vital in the functioning of all ecosystems; however, most microorganisms are uncultivated, and their roles in natural systems are unclear. Here, using random shotgun sequencing of DNA from a natural acidophilic biofilm, we report reconstruction of near-complete genomes of Leptospirillum group II and Ferroplasma type II, and partial recovery of three other genomes. This was possible because the biofilm was dominated by a small number of species populations and the frequency of genomic rearrangements and gene insertions or deletions was relatively low. Because each sequence read came from a different individual, we could determine that single-nucleotide polymorphisms are the predominant form of heterogeneity at the strain level. The Leptospirillum group II genome had remarkably few nucleotide polymorphisms, despite the existence of low-abundance variants. The Ferroplasma type II genome seems to be a composite from three ancestral strains that have undergone homologous recombination to form a large population of mosaic genomes. Analysis of the gene complement for each organism revealed the pathways for carbon and nitrogen fixation and energy generation, and provided insights into survival strategies in an extreme environment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A protocol for generating a high-quality genome-scale metabolic reconstruction.

            Network reconstructions are a common denominator in systems biology. Bottom-up metabolic network reconstructions have been developed over the last 10 years. These reconstructions represent structured knowledge bases that abstract pertinent information on the biochemical transformations taking place within specific target organisms. The conversion of a reconstruction into a mathematical format facilitates a myriad of computational biological studies, including evaluation of network content, hypothesis testing and generation, analysis of phenotypic characteristics and metabolic engineering. To date, genome-scale metabolic reconstructions for more than 30 organisms have been published and this number is expected to increase rapidly. However, these reconstructions differ in quality and coverage that may minimize their predictive potential and use as knowledge bases. Here we present a comprehensive protocol describing each step necessary to build a high-quality genome-scale metabolic reconstruction, as well as the common trials and tribulations. Therefore, this protocol provides a helpful manual for all stages of the reconstruction process.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              UniRef: comprehensive and non-redundant UniProt reference clusters.

              Redundant protein sequences in biological databases hinder sequence similarity searches and make interpretation of search results difficult. Clustering of protein sequence space based on sequence similarity helps organize all sequences into manageable datasets and reduces sampling bias and overrepresentation of sequences. The UniRef (UniProt Reference Clusters) provide clustered sets of sequences from the UniProt Knowledgebase (UniProtKB) and selected UniProt Archive records to obtain complete coverage of sequence space at several resolutions while hiding redundant sequences. Currently covering >4 million source sequences, the UniRef100 database combines identical sequences and subfragments from any source organism into a single UniRef entry. UniRef90 and UniRef50 are built by clustering UniRef100 sequences at the 90 or 50% sequence identity levels. UniRef100, UniRef90 and UniRef50 yield a database size reduction of approximately 10, 40 and 70%, respectively, from the source sequence set. The reduced redundancy increases the speed of similarity searches and improves detection of distant relationships. UniRef entries contain summary cluster and membership information, including the sequence of a representative protein, member count and common taxonomy of the cluster, the accession numbers of all the merged entries and links to rich functional annotation in UniProtKB to facilitate biological discovery. UniRef has already been applied to broad research areas ranging from genome annotation to proteomics data analysis. UniRef is updated biweekly and is available for online search and retrieval at http://www.uniprot.org, as well as for download at ftp://ftp.uniprot.org/pub/databases/uniprot/uniref. Supplementary data are available at Bioinformatics online.
                Bookmark

                Author and article information

                Journal
                Nat. Rev. Microbiol.
                Nature reviews. Microbiology
                1740-1534
                1740-1526
                Jun 2015
                : 13
                : 6
                Affiliations
                [1 ] 1] Biostatistics Department, Harvard School of Public Health, Boston, Massachusetts 02115, USA. [2] The Broad Institute, Cambridge, Massachusetts 02142, USA.
                [2 ] 1] The Broad Institute, Cambridge, Massachusetts 02142, USA. [2] Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA.
                [3 ] Biostatistics Department, Harvard School of Public Health, Boston, Massachusetts 02115, USA.
                Article
                nrmicro3451 NIHMS766113
                10.1038/nrmicro3451
                25915636

                Comments

                Comment on this article