6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      TGF-β1-VEGF-A pathway induces neoangiogenesis with peritoneal fibrosis in patients undergoing peritoneal dialysis

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The characteristic features of chronic peritoneal injury with peritoneal dialysis (PD) are submesothelial fibrosis and neoangiogenesis. Transforming growth factor (TGF)β and vascular endothelial growth factor (VEGF)-A are the main mediators of fibrosis and neoangiogenesis, respectively; however, the effect of the interaction between them on the peritoneum is not well known. In this study, we investigated the relationship between TGF-β1 and VEGF-A in inducing peritoneal fibrosis by use of human tissues and dialysate, cultured cells, and animal models. The VEGF-A concentration correlated with the dialysate-to-plasma ratio of creatinine (D/P Cr) ( P < 0.001) and TGF-β1 ( P < 0.001) in human PD effluent. VEGF-A mRNA levels increased significantly in the peritoneal tissues of human ultrafiltration failure (UFF) patients and correlated with number of vessels ( P < 0.01) and peritoneal thickness ( P < 0.001). TGF-β1 increased VEGF-A production in human mesothelial cell lines and fibroblast cell lines, and TGF-β1-induced VEGF-A was suppressed by TGF-β receptor I (TGFβR-I) inhibitor. Incremental peak values of VEGF-A mRNA stimulated by TGF-β1 in human cultured mesothelial cells derived from PD patients with a range of peritoneal membrane functions correlated with D/P Cr ( P < 0.05). To evaluate the regulatory mechanisms of VEGF-A and neoangiogenesis in vivo, we administered TGFβR-I inhibitor intraperitoneally in a rat chlorhexidine-induced peritoneal injury (CG) model. TGFβR-I inhibitor administration in the CG model decreased peritoneal thickness ( P < 0.001), the number of vessels ( P < 0.001), and VEGF-A levels ( P < 0.05). These results suggest that neoangiogenesis is associated with fibrosis through the TGF-β1-VEGF-A pathway in mesothelial cells and fibroblasts. These findings are important when considering the strategy for management of UFF in PD patients.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Notch-dependent VEGFR3 upregulation allows angiogenesis without VEGF-VEGFR2 signalling.

          Developing tissues and growing tumours produce vascular endothelial growth factors (VEGFs), leading to the activation of the corresponding receptors in endothelial cells. The resultant angiogenic expansion of the local vasculature can promote physiological and pathological growth processes. Previous work has uncovered that the VEGF and Notch pathways are tightly linked. Signalling triggered by VEGF-A (also known as VEGF) has been shown to induce expression of the Notch ligand DLL4 in angiogenic vessels and, most prominently, in the tip of endothelial sprouts. DLL4 activates Notch in adjacent cells, which suppresses the expression of VEGF receptors and thereby restrains endothelial sprouting and proliferation. Here we show, by using inducible loss-of-function genetics in combination with inhibitors in vivo, that DLL4 protein expression in retinal tip cells is only weakly modulated by VEGFR2 signalling. Surprisingly, Notch inhibition also had no significant impact on VEGFR2 expression and induced deregulated endothelial sprouting and proliferation even in the absence of VEGFR2, which is the most important VEGF-A receptor and is considered to be indispensable for these processes. By contrast, VEGFR3, the main receptor for VEGF-C, was strongly modulated by Notch. VEGFR3 kinase-activity inhibitors but not ligand-blocking antibodies suppressed the sprouting of endothelial cells that had low Notch signalling activity. Our results establish that VEGFR2 and VEGFR3 are regulated in a highly differential manner by Notch. We propose that successful anti-angiogenic targeting of these receptors and their ligands will strongly depend on the status of endothelial Notch signalling.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Macrophage responses to hypoxia: implications for tumor progression and anti-cancer therapies.

            The presence of multiple areas of hypoxia (low oxygen tension) is a hallmark feature of human and experimental tumors. Monocytes are continually recruited into tumors, differentiate into tumor-associated macrophages (TAMs), and then accumulate in these hypoxic areas. A number of recent studies have shown that macrophages respond to the levels of hypoxia found in tumors by up-regulating such transcription factors as hypoxia-inducible factors 1 and 2, which in turn activate a broad array of mitogenic, pro-invasive, pro-angiogenic, and pro-metastatic genes. This could explain why high numbers of TAMs correlate with poor prognosis in various forms of cancer. In this review, we assess the evidence for hypoxia activating a distinct, pro-tumor phenotype in macrophages and the possible effect of this on the growth, invasion, angiogenesis, and immune evasion of tumors. We also discuss current attempts to selectively target TAMs for destruction or to use them to deliver gene therapy specifically to hypoxic tumor sites.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The pathophysiology of the peritoneal membrane.

              The development of peritoneal dialysis (PD) as a successful therapy has and still depends on experimental models to test and understand critical pieces of pathophysiology. To date, the majority of studies performed in rat and rabbit models derive mechanistic insights primarily on the basis of interventional pharmacologic agents, blocking antibodies, or transient expression systems. Because body size no longer limits the performance of in vivo studies of PD, genetic mouse models are increasingly available to investigate the molecular and pathophysiologic mechanisms of the peritoneal membrane. We illustrate in this review how these investigations are catching up with other areas of biomedical research and provide direct evidence for understanding transport and ultrafiltration, responses to infection, and structural changes including fibrosis and angiogenesis. These studies are relevant to mechanisms responsible not only for the major complications of PD but also for endothelial biology, host defense, inflammation, and tissue repair processes.
                Bookmark

                Author and article information

                Journal
                American Journal of Physiology-Renal Physiology
                American Journal of Physiology-Renal Physiology
                American Physiological Society
                1931-857X
                1522-1466
                February 01 2018
                February 01 2018
                : 314
                : 2
                : F167-F180
                Affiliations
                [1 ]Department of Nephrology and Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
                [2 ]Futatsuya Hospital, Ishikawa, Japan
                [3 ]Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
                [4 ]Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
                [5 ]Department of Medical Biochemistry, School of Pharmacy, Aichi Gakuin University, Nagoya, Japan
                [6 ]Department of Nephrology and Rheumatology, Aichi Medical University School of Medicine, Aichi, Japan
                Article
                10.1152/ajprenal.00052.2017
                28978530
                704f4127-52da-4d94-97c6-2928b8d001d0
                © 2018
                History

                Comments

                Comment on this article