12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tempol Protects Against Acetaminophen Induced Acute Hepatotoxicity by Inhibiting Oxidative Stress and Apoptosis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Acetaminophen (APAP)-induced acute hepatotoxicity is the leading cause of drug-induced acute liver failure. The aim of this study was to evaluate the effects of 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (tempol) on the protection of APAP-induced hepatotoxicity in mice. Mice were pretreated with a single dose of tempol (20 mg/kg per day) orally for 7 days. On the seventh day, mice were injected with a single dose of APAP (300 mg/kg) to induce acute hepatotoxicity. Our results showed that tempol treatment markedly improved liver functions with alleviations of histopathological damage induced by APAP. Tempol treatment upregulated levels of antioxidant proteins, including superoxide dismutase, catalase, and glutathione. Also, phosphorylation of phosphoinositide 3-kinase (PI3K) and protein kinase B (Akt) and protein expression of nuclear factor erythroid 2-related factor (Nrf 2) and heme oxygense-1 (HO-1) were all increased by tempol, which indicated tempol protected against APAP-induced hepatotoxicity via the PI3K/Akt/Nrf2 pathway. Moreover, tempol treatment decreased pro-apoptotic protein expressions (cleaved caspase-3 and Bax) and increased anti-apoptotic Bcl-2 in liver, as well as reducing apoptotic cells of TUNEL staining, which suggested apoptotic effects of tempol treatment. Overall, we found that tempol normalizes liver function in APAP-induced acute hepatotoxicity mice via activating PI3K/Akt/Nrf2 pathway, thus enhancing antioxidant response and inhibiting hepatic apoptosis.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Curcumin activates the haem oxygenase-1 gene via regulation of Nrf2 and the antioxidant-responsive element.

          The transcription factor Nrf2, which normally exists in an inactive state as a consequence of binding to a cytoskeleton-associated protein Keap1, can be activated by redox-dependent stimuli. Alteration of the Nrf2-Keap1 interaction enables Nrf2 to translocate to the nucleus, bind to the antioxidant-responsive element (ARE) and initiate the transcription of genes coding for detoxifying enzymes and cytoprotective proteins. This response is also triggered by a class of electrophilic compounds including polyphenols and plant-derived constituents. Recently, the natural antioxidants curcumin and caffeic acid phenethyl ester (CAPE) have been identified as potent inducers of haem oxygenase-1 (HO-1), a redox-sensitive inducible protein that provides protection against various forms of stress. Here, we show that in renal epithelial cells both curcumin and CAPE stimulate the expression of Nrf2 in a concentration- and time-dependent manner. This effect was associated with a significant increase in HO-1 protein expression and haem oxygenase activity. From several lines of investigation we also report that curcumin (and, by inference, CAPE) stimulates ho-1 gene activity by promoting inactivation of the Nrf2-Keap1 complex, leading to increased Nrf2 binding to the resident ho-1 AREs. Moreover, using antibodies and specific inhibitors of the mitogen-activated protein kinase (MAPK) pathways, we provide data implicating p38 MAPK in curcumin-mediated ho-1 induction. Taken together, these results demonstrate that induction of HO-1 by curcumin and CAPE requires the activation of the Nrf2/ARE pathway.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Determination of glutathione and glutathione disulfide in biological samples.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The regulation and activities of the multifunctional serine/threonine kinase Akt/PKB.

              N Hay, E Kandel (1999)
              The serine/threonine kinase Akt, or protein kinase B (PKB), has recently been a focus of intense research. It appears that Akt/PKB lies in the crossroads of multiple cellular signaling pathways and acts as a transducer of many functions initiated by growth factor receptors that activate phosphatidylinositol 3-kinase (PI 3-kinase). Akt/PKB is particularly important in mediating several metabolic actions of insulin. Another major activity of Akt/PKB is to mediate cell survival. In addition, the recent discovery of the tumor suppressor PTEN as an antagonist of PI 3-kinase and Akt/PKB kinase activity suggests that Akt/PKB is a critical factor in the genesis of cancer. Thus, elucidation of the mechanisms of Akt/PKB regulation and its physiological functions should be important for the understanding of cellular metabolism, apoptosis, and cancer. Copyright 1999 Academic Press.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                31 May 2019
                2019
                : 10
                : 660
                Affiliations
                Department of General Surgery, Huaihe Hospital of Henan University , Kaifeng, China
                Author notes

                Edited by: Honglei Weng, Universität Heidelberg, Germany

                Reviewed by: Isabel Fabregat, Biomedical Research Institute of Bellvitge, Spain; Matthias J. Bahr, Sana Kliniken Lübeck, Germany

                *Correspondence: Junhong Hu, hjh-8282@ 123456163.com

                This article was submitted to Gastrointestinal Sciences, a section of the journal Frontiers in Physiology

                Article
                10.3389/fphys.2019.00660
                6554449
                31214044
                70539634-5d5d-4281-b813-b0a7e7b4a0c6
                Copyright © 2019 Ge, Wang, Zhang, Li and Hu.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 01 March 2019
                : 09 May 2019
                Page count
                Figures: 5, Tables: 0, Equations: 0, References: 39, Pages: 9, Words: 4771
                Categories
                Physiology
                Original Research

                Anatomy & Physiology
                acetaminophen,acute hepatotoxicity,tempol,oxidative stress,apoptosis
                Anatomy & Physiology
                acetaminophen, acute hepatotoxicity, tempol, oxidative stress, apoptosis

                Comments

                Comment on this article