+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found

      Regulation of the Hypothalamic Melanin-Concentrating Hormone Neurons by Sex Steroids in the Goldfish: Possible Role in the Modulation of Luteinizing Hormone Secretion

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          In teleost fish, melanin-concentrating hormone (MCH) is a cyclic heptadecapeptide released from the pituitary during white background adaptation. In the periphery MCH concentrates melanin granules in melanophores thus lightening the body color of fish. Evidence from mammalian studies has demonstrated the involvement of MCH in the control of energy balance and the reproductive axis. Information about the hormonal regulation of MCH neurons in non-mammalian systems is scarce and nothing is known about its role in the regulation of the reproductive axis. We here report the molecular characterization of two MCH precursors in the goldfish. Both precursors are peripherally expressed and the expression in the central nervous system is restricted to the mediobasal hypothalamus. Hypothalamic MCH-mRNA production is upregulated during white background adaptation. Both testosterone and estradiol stimulate MCH mRNA expression in the hypothalamus in a sex-dependent manner, with females showing the greatest responsiveness. In addition, in vitroexperiments demonstrated that graded doses of salmon MCH stimulate LH, but not GH, secretion from dispersed pituitary cells. Results suggest that hypothalamic MCH may participate in the steroid positive feedback loop on pituitary LH secretion.

          Related collections

          Most cited references 42

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular characterization of the melanin-concentrating-hormone receptor.

          Orphan G-protein-coupled receptors (GPCRs) are cloned proteins with structural characteristics common to the GPCRs but that bind unidentified ligands. Orphan GPCRs have been used as targets to identify novel transmitter molecules. Here we describe the isolation from brain extracts and the characterization of the natural ligand of a particular orphan GPCR (SLC-1) that is sequentially homologous to the somatostatin receptors. We show that the natural ligand of this receptor is the neuropeptide melanin-concentrating hormone (MCH). MCH is a cyclic peptide that regulates a variety of functions in the mammalian brain, in particular feeding behaviour. We demonstrate that nanomolar concentrations of MCH strongly activate SLC-1-related pathways through G(alpha)i and/or G(alpha)q proteins. We have analysed the tissue localization of the MCH receptor and find that it is expressed in several brain regions, in particular those involved in olfactory learning and reinforcement mechanisms, indicating that therapies targeting the MCH receptor should act on the neuronal regulation of food consumption.
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular characterization of three estrogen receptor forms in zebrafish: binding characteristics, transactivation properties, and tissue distributions.

            There are two estrogen receptor (ER) subtypes in fish, ERalpha and ERbeta, and increasing evidence that the ERbeta subtype has more than one form. However, there is little information on the characteristics and functional significance of these ERs in adults and during development. Here, we report the cloning and characterization of three functional ER forms, zfERalpha, zfERbeta1, and zfERbeta2, in the zebrafish. The percentages of identity between these receptors suggest the existence of three distinct genes. Each cDNA encoded a protein that specifically bound estradiol with a dissociation constant ranging from 0.4 nM (zfERbeta2) to 0.75 nM (zfERalpha and zfERbeta1). In transiently transfected cells, all three forms were able to induce, in a dose-dependent manner, the expression of a reporter gene driven by a consensus estrogen responsive element; zfERbeta2 was slightly more sensitive than zfERalpha and zfERbeta1. Tissue distribution pattern, analyzed by reverse transcription polymerase chain reaction, showed that the three zfER mRNAs largely overlap and are predominantly expressed in brain, pituitary, liver, and gonads. In situ hybridization was performed to study in more detail the distribution of the three zfER mRNAs in the brain of adult females. The zfER mRNAs exhibit distinct but partially overlapping patterns of expression in two neuroendocrine regions, the preoptic area and the mediobasal hypothalamus. The characterization of these zfERs provides a new perspective for understanding the mechanisms underlying estradiol actions in a vertebrate species commonly used for developmental studies.
              • Record: found
              • Abstract: not found
              • Article: not found

              A stereotaxic atlas and technique for forebrain nuclei of the goldfish, Carassius auratus.


                Author and article information

                S. Karger AG
                March 2007
                30 March 2007
                : 84
                : 6
                : 364-377
                aDepartment of Biological Sciences, University of Alberta, Edmonton, Alta., Canada; bDepartment of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas, Ribera de Cabanes, Spain; cInstituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomus (IIB-INTECH), Chascomus, Argentina; dBamfield Marine Sciences Centre, Bamfield, B.C., Canada
                98334 Neuroendocrinology 2006;84:364–377
                © 2006 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 8, References: 46, Pages: 14
                GnRH, Gonadotropins, Gonadal Steroids and Reproduction


                Comment on this article