47
views
0
recommends
+1 Recommend
0 collections
    8
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mouse PRDM9 DNA-Binding Specificity Determines Sites of Histone H3 Lysine 4 Trimethylation for Initiation of Meiotic Recombination

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The nature of the PRDM9 zinc finger domain determines the location of hotspots for meiotic recombination in the genome and promotes local histone H3K4 trimethylation.

          Abstract

          Meiotic recombination generates reciprocal exchanges between homologous chromosomes (also called crossovers, COs) that are essential for proper chromosome segregation during meiosis and are a major source of genome diversity by generating new allele combinations. COs have two striking properties: they occur at specific sites, called hotspots, and these sites evolve rapidly. In mammals, the Prdm9 gene, which encodes a meiosis-specific histone H3 methyltransferase, has recently been identified as a determinant of CO hotspots. Here, using transgenic mice, we show that the sole modification of PRDM9 zinc fingers leads to changes in hotspot activity, histone H3 lysine 4 trimethylation (H3K4me3) levels, and chromosome-wide distribution of COs. We further demonstrate by an in vitro assay that the PRDM9 variant associated with hotspot activity binds specifically to DNA sequences located at the center of the three hotspots tested. Remarkably, we show that mutations in cis located at hotspot centers and associated with a decrease of hotspot activity affect PRDM9 binding. Taken together, these results provide the direct demonstration that Prdm9 is a master regulator of hotspot localization through the DNA binding specificity of its zinc finger array and that binding of PRDM9 at hotspots promotes local H3K4me3 enrichment.

          Author Summary

          Meiosis is the process of cell division that reduces the number of chromosome sets from two to one, so producing gametes for sexual reproduction. During meiosis in many organisms, there is reciprocal exchange of genetic material between homologous chromosomes by the formation of “crossovers,” which promote genetic diversity by creating new combinations of gene variants and play an important mechanical role in the segregation of chromosomes. Crossovers do not occur randomly throughout the genome, but in small regions called hotspots. Recent work showed that hotspots have specific structural features and that the protein PRDM9 is important in specifying their location. PRDM9 contains a so-called zinc finger domain that is predicted to bind specific DNA sequences, suggesting that hotspots might be sites where PRDM9 binds. By using transgenic mice expressing PRDM9 with modified zinc fingers, here we show directly that the nature of the zinc fingers in PRDM9 determines crossover hotspot localization. We show that PRDM9 binds DNA sequences at the center of hotspots. Furthermore, we identify DNA sequence polymorphisms that affect its binding and the extent of crossover activity. Overall, our work shows that PRDM9, through its zinc finger domain, is a master regulator of hotspot location in the mouse genome.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          The fine-scale structure of recombination rate variation in the human genome.

          The nature and scale of recombination rate variation are largely unknown for most species. In humans, pedigree analysis has documented variation at the chromosomal level, and sperm studies have identified specific hotspots in which crossing-over events cluster. To address whether this picture is representative of the genome as a whole, we have developed and validated a method for estimating recombination rates from patterns of genetic variation. From extensive single-nucleotide polymorphism surveys in European and African populations, we find evidence for extreme local rate variation spanning four orders in magnitude, in which 50% of all recombination events take place in less than 10% of the sequence. We demonstrate that recombination hotspots are a ubiquitous feature of the human genome, occurring on average every 200 kilobases or less, but recombination occurs preferentially outside genes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fine-scale recombination rate differences between sexes, populations and individuals.

            Meiotic recombinations contribute to genetic diversity by yielding new combinations of alleles. Recently, high-resolution recombination maps were inferred from high-density single-nucleotide polymorphism (SNP) data using linkage disequilibrium (LD) patterns that capture historical recombination events. The use of these maps has been demonstrated by the identification of recombination hotspots and associated motifs, and the discovery that the PRDM9 gene affects the proportion of recombinations occurring at hotspots. However, these maps provide no information about individual or sex differences. Moreover, locus-specific demographic factors like natural selection can bias LD-based estimates of recombination rate. Existing genetic maps based on family data avoid these shortcomings, but their resolution is limited by relatively few meioses and a low density of markers. Here we used genome-wide SNP data from 15,257 parent-offspring pairs to construct the first recombination maps based on directly observed recombinations with a resolution that is effective down to 10 kilobases (kb). Comparing male and female maps reveals that about 15% of hotspots in one sex are specific to that sex. Although male recombinations result in more shuffling of exons within genes, female recombinations generate more new combinations of nearby genes. We discover novel associations between recombination characteristics of individuals and variants in the PRDM9 gene and we identify new recombination hotspots. Comparisons of our maps with two LD-based maps inferred from data of HapMap populations of Utah residents with ancestry from northern and western Europe (CEU) and Yoruba in Ibadan, Nigeria (YRI) reveal population differences previously masked by noise and map differences at regions previously described as targets of natural selection.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Recombinational DNA double-strand breaks in mice precede synapsis.

              In Saccharomyces cerevisiae, meiotic recombination is initiated by Spo11-dependent double-strand breaks (DSBs), a process that precedes homologous synapsis. Here we use an antibody specific for a phosphorylated histone (gamma-H2AX, which marks the sites of DSBs) to investigate the timing, distribution and Spo11-dependence of meiotic DSBs in the mouse. We show that, as in yeast, recombination in the mouse is initiated by Spo11-dependent DSBs that form during leptotene. Loss of gamma-H2AX staining (which in irradiated somatic cells is temporally linked with DSB repair) is temporally and spatially correlated with synapsis, even when this synapsis is 'non-homologous'.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                plos
                plosbiol
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                October 2011
                October 2011
                18 October 2011
                : 9
                : 10
                : e1001176
                Affiliations
                [1 ]Institut de Génétique Humaine, CNRS UPR 1142, Montpellier, France
                [2 ]Centre d'Ingénierie Génétique Murine, Institut Pasteur, Paris, France
                National Cancer Institute, United States of America
                Author notes

                The author(s) have made the following declarations about their contributions: Conceived and designed the experiments: CG PB FB BdM. Performed the experiments: CG PB FB. Analyzed the data: CG PB FB BdM. Contributed reagents/materials/analysis tools: GCLF FL. Wrote the paper: CG FB BdM.

                Article
                PBIOLOGY-D-11-02060
                10.1371/journal.pbio.1001176
                3196474
                22028627
                7054f0a1-476c-4fe6-b7e0-dca0e5eeee4b
                Grey et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 20 May 2011
                : 7 September 2011
                Page count
                Pages: 9
                Categories
                Research Article
                Biology
                Genetics
                Epigenetics
                Histone Modification
                Molecular Cell Biology
                Chromosome Biology
                Chromatin
                Meiosis
                Nucleic Acids
                DNA
                DNA recombination

                Life sciences
                Life sciences

                Comments

                Comment on this article