17
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      International Journal of Nanomedicine (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the application of nanotechnology in diagnostics, therapeutics, and drug delivery systems throughout the biomedical field. Sign up for email alerts here.

      105,621 Monthly downloads/views I 7.033 Impact Factor I 10.9 CiteScore I 1.22 Source Normalized Impact per Paper (SNIP) I 1.032 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Optimum Preparation Method for Self-Assembled PEGylation Nano-Adjuvant Based on Rehmannia glutinosa Polysaccharide and Its Immunological Effect on Macrophages

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Rehmannia glutinosa polysaccharide is the main reason that contributes to the immunological function of R. glutinosa. Due to its disadvantages in clinical use, here we designed the PEGylation nano-RGP (pRL) to improve the drug-targeting effect and the immunological function. Our present work aims to establish the optimum condition of preparing the pRL and to investigate its immunological function on macrophages.

          Methods

          pRL was prepared by thin film hydration method combined with ultra-sonication technique. And its preparation conditions were optimized with response surface methodology. Also, the lyophilization method was optimized. The characteristics of the pRL were evaluated, including particle size, drug loading, encapsulation efficiency and morphology. The immunological function of pRL on macrophage was investigated through CCK-8 test, ELISA and flow cytometry.

          Results

          The lipid-to-cholesterol molar ratio of 8:1, the addition of DSPE-PEG 2000 of 9% and the lipid-to-drug ratio of 5.4:1 were the optimum preparation technology for pRL. The encapsulation efficiency (EE) of pRL under this preparation technology was 95.81±1.58%, with a particle size of 31.98 ± 2.6 nm. The lactose-to-lipid ratio (2:1) was the optimal lyophilization method. pRL promoted macrophage proliferation, which is significantly better than that of nano-RGP without PEGylation (RL). pRL-stimulated RAW264.7 cells showed a high secretion of pro-inflammatory cytokines, which is the characteristic indicator of M1 polarization. Enhanced cellular uptake through macropinocytosis-dependent and caveolae-mediated endocytosis was observed in pRL-treated RAW264.7 cells.

          Conclusion

          Our study concluded that PEGylation effectively overcame the poor targeting effect of Rehmannia glutinosa polysaccharide (RGP) and significantly improved the immunological profile of its nano-formulation, which suggested that pRL could serve as an immune adjuvant in clinical application.

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Macrophage plasticity, polarization, and function in health and disease.

          Macrophages are heterogeneous and their phenotype and functions are regulated by the surrounding micro-environment. Macrophages commonly exist in two distinct subsets: 1) Classically activated or M1 macrophages, which are pro-inflammatory and polarized by lipopolysaccharide (LPS) either alone or in association with Th1 cytokines such as IFN-γ, GM-CSF, and produce pro-inflammatory cytokines such as interleukin-1β (IL-1β), IL-6, IL-12, IL-23, and TNF-α; and 2) Alternatively activated or M2 macrophages, which are anti-inflammatory and immunoregulatory and polarized by Th2 cytokines such as IL-4 and IL-13 and produce anti-inflammatory cytokines such as IL-10 and TGF-β. M1 and M2 macrophages have different functions and transcriptional profiles. They have unique abilities by destroying pathogens or repair the inflammation-associated injury. It is known that M1/M2 macrophage balance polarization governs the fate of an organ in inflammation or injury. When the infection or inflammation is severe enough to affect an organ, macrophages first exhibit the M1 phenotype to release TNF-α, IL-1β, IL-12, and IL-23 against the stimulus. But, if M1 phase continues, it can cause tissue damage. Therefore, M2 macrophages secrete high amounts of IL-10 and TGF-β to suppress the inflammation, contribute to tissue repair, remodeling, vasculogenesis, and retain homeostasis. In this review, we first discuss the basic biology of macrophages including origin, differentiation and activation, tissue distribution, plasticity and polarization, migration, antigen presentation capacity, cytokine and chemokine production, metabolism, and involvement of microRNAs in macrophage polarization and function. Secondly, we discuss the protective and pathogenic role of the macrophage subsets in normal and pathological pregnancy, anti-microbial defense, anti-tumor immunity, metabolic disease and obesity, asthma and allergy, atherosclerosis, fibrosis, wound healing, and autoimmunity.
            • Record: found
            • Abstract: found
            • Article: not found

            Nanoparticle-mediated cellular response is size-dependent.

            Nanostructures of different sizes, shapes and material properties have many applications in biomedical imaging, clinical diagnostics and therapeutics. In spite of what has been achieved so far, a complete understanding of how cells interact with nanostructures of well-defined sizes, at the molecular level, remains poorly understood. Here we show that gold and silver nanoparticles coated with antibodies can regulate the process of membrane receptor internalization. The binding and activation of membrane receptors and subsequent protein expression strongly depend on nanoparticle size. Although all nanoparticles within the 2-100 nm size range were found to alter signalling processes essential for basic cell functions (including cell death), 40- and 50-nm nanoparticles demonstrated the greatest effect. These results show that nanoparticles should no longer be viewed as simple carriers for biomedical applications, but can also play an active role in mediating biological effects. The findings presented here may assist in the design of nanoscale delivery and therapeutic systems and provide insights into nanotoxicity.
              • Record: found
              • Abstract: not found
              • Article: not found

              Biomaterial based modulation of macrophage polarization: a review and suggested design principles

                Author and article information

                Journal
                Int J Nanomedicine
                Int J Nanomedicine
                IJN
                intjnano
                International Journal of Nanomedicine
                Dove
                1176-9114
                1178-2013
                29 November 2019
                2019
                : 14
                : 9361-9375
                Affiliations
                [1 ]Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Science , Hangzhou 310021, People’s Republic of China
                [2 ]Zhejiang Normal University , Jinhua 321000, People’s Republic of China
                Author notes
                Correspondence: Yan Liu; Guolian Bao Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Science , Hangzhou310021, People’s Republic of China Email 35792191@qq.com; baoguolian@163.com
                Article
                221398
                10.2147/IJN.S221398
                6890198
                31819437
                705ca8cb-83ec-48a3-995a-c235e700911b
                © 2019 Huang et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 10 July 2019
                : 13 November 2019
                Page count
                Figures: 5, Tables: 5, References: 44, Pages: 15
                Categories
                Original Research

                Molecular medicine
                rehmannia glutinosa polysaccharide,pegylation,preparation technology,lyophilization method,macrophages

                Comments

                Comment on this article

                Related Documents Log