50
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fructus mume alleviates chronic cerebral hypoperfusion-induced white matter and hippocampal damage via inhibition of inflammation and downregulation of TLR4 and p38 MAPK signaling

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Fructus mume ( F. mume) has been used as a traditional medicine for many years in Asian countries. The present study was designed to determine the effect of a 70% ethanol extract of F. mume on white matter and hippocampal damage induced by chronic cerebral hypoperfusion.

          Methods

          Permanent bilateral common carotid artery occlusion (BCCAo) was performed on male Wistar rats to induce chronic cerebral hypoperfusion. Daily oral administration of F. mume (200 mg/kg) was initiated 21 days after BCCAo and continued for 42 days. The experimental groups in this study were divided into three groups: a sham-operated group, a BCCAo group, and a BCCAo group that was administered with the F. mume extract. The activation of glial cells, including microglia and astrocytes, and the levels of myelin basic protein (MBP), inflammatory mediators, Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), and p38 mitogen-activated protein kinase (MAPK) phosphorylation were measured in brains from rats subjected to chronic BCCAo.

          Results

          Our results revealed that F. mume alleviates the reduction in MBP expression caused by chronic BCCAo in the white matter and the hippocampus and significantly attenuates microglial and astrocytic activation induced by chronic BCCAo in the optic tract of white matter. In addition, F. mume treatment reduced the increased expression of cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β) and interleukin-6 (IL-6), as well as the activation of TLR4/MyD88 and p38 MAPK signaling, in the hippocampus of rats subjected to chronic BCCAo.

          Conclusion

          Taken together, our findings demonstrate that brain injury induced by chronic BCCAo is ameliorated by the anti-inflammatory effects of F. mume via inhibition of MBP degradation, microglial and astrocytic activation, increased inflammatory mediator expression, and activated intracellular signalings, including TLR4 and p38 MAPK, implying that F. mume is potentially an effective therapeutics for the treatment of vascular dementia.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s12906-015-0652-1) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Permanent, bilateral common carotid artery occlusion in the rat: a model for chronic cerebral hypoperfusion-related neurodegenerative diseases.

          Chronic cerebral hypoperfusion has been associated with cognitive decline in aging and Alzheimer's disease. Moreover, the pattern of cerebral blood flow in mild cognitive impairment has emerged as a predictive marker for the progression into Alzheimer's disease. The reconstruction of a pathological condition in animal models is a suitable approach to the unraveling of causal relationships. For this reason, permanent, bilateral occlusion of the common carotid arteries (2VO) in rats has been established as a procedure to investigate the effects of chronic cerebral hypoperfusion on cognitive dysfunction and neurodegenerative processes. Over the years, the 2VO model has generated a large amount of data, revealing the 2VO-related pattern of cerebral hypoperfusion and metabolic changes, learning and memory disturbances, failure of neuronal signaling, and the neuropathological changes in the hippocampus. In addition, the model has been introduced in research into ischemic white matter injury and ischemic eye disease. The present survey sets out to provide a comprehensive summary of the achievements made with the 2VO model, and a critical evaluation and integration of the various results, and to relate the experimental data to human diseases. The data that have accumulated from use of the 2VO model in the rat permit an understanding of the causative role played by cerebral hypoperfusion in neurodegenerative diseases. Thorough characterization of the model suggests that 2VO in the rat is suitable for the development of potentially neuroprotective strategies in neurodegenerative diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            White matter lesions and glial activation in a novel mouse model of chronic cerebral hypoperfusion.

            Cerebrovascular white matter (WM) lesions are closely associated with cognitive impairment and gait disorders in the elderly. We have successfully established a mouse model of chronic cerebral hypoperfusion that may provide new strategies for the molecular analysis of cerebrovascular WM lesions. Adult C57Bl/6 male mice were subjected to bilateral common carotid artery stenosis (BCAS) using external microcoils with varying inner diameters from 0.16 to 0.22 mm. Cerebral blood flow (CBF) in the frontal cortices was measured by laser-Doppler flowmetry at 2 hours and at 1, 3, 7, 14, and 30 days after BCAS. The brains were then removed and examined at 30 days with histological stains and immunohistochemistry for markers of microglia and astroglia. At 2 hours, the CBF values (ratio to the preoperative value) did not change in the 0.22 mm group but decreased significantly to 77.3+/-13.4% in the 0.20 mm group, 67.3+/-18.5% in the 0.18 mm group, and 51.4+/-11.5% in the 0.16 mm group. At day 1, the CBF began to recover in all groups but remained significantly lower until 14 days in comparison to the control group. In the 0.20 mm and 0.18 mm groups, WM lesions occurred after 14 days without any gray matter involvement. These lesions were the most intense in the corpus callosum adjacent to the lateral ventricle but were mild in the anterior commissure and optic tract. In contrast, 4 of 5 mice developed some gray matter changes in the 0.16 mm group. The proliferation of activated microglia and astroglia was observed in the WM beyond 3 days after BCAS. WM lesions were successfully induced after chronic cerebral hypoperfusion with relative preservation of the visual pathway. These features in this mouse model are appropriate for cognitive assessment and genetic analysis, and it may provide a powerful tool to understand the pathophysiology of WM lesions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Subcortical ischaemic vascular dementia.

              Vascular dementia is the second most common type of dementia. The subcortical ischaemic form (SIVD) frequently causes cognitive impairment and dementia in elderly people. SIVD results from small-vessel disease, which produces either arteriolar occlusion and lacunes or widespread incomplete infarction of white matter due to critical stenosis of medullary arterioles and hypoperfusion (Binswanger's disease). Symptoms include motor and cognitive dysexecutive slowing, forgetfulness, dysarthria, mood changes, urinary symptoms, and short-stepped gait. These manifestations probably result from ischaemic interruption of parallel circuits from the prefrontal cortex to the basal ganglia and corresponding thalamocortical connections. Brain imaging (computed tomography and magnetic resonance imaging) is essential for correct diagnosis. The main risk factors are advanced age, hypertension, diabetes, smoking, hyperhomocysteinaemia, hyperfibrinogenaemia, and other conditions that can cause brain hypoperfusion such as obstructive sleep apnoea, congestive heart failure, cardiac arrhythmias, and orthostatic hypotension. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy (CADASIL)and some forms of cerebral amyloid angiopathy have a genetic basis. Treatment is symptomatic and prevention requires control of treatable risk factors.
                Bookmark

                Author and article information

                Contributors
                lkm4703@kiom.re.kr
                fart0920@kiom.re.kr
                buykim@kiom.re.kr
                yiinsun2@naver.com
                jshan06@konkuk.ac.kr
                byhwang@chungbuk.ac.kr
                wkjeon@kiom.re.kr
                Journal
                BMC Complement Altern Med
                BMC Complement Altern Med
                BMC Complementary and Alternative Medicine
                BioMed Central (London )
                1472-6882
                22 April 2015
                22 April 2015
                2015
                : 15
                : 125
                Affiliations
                [ ]KM-Based Herbal Drug Development Group, Korea Institute of Oriental Medicine, Daejeon, 305-811 Republic of Korea
                [ ]Department of Biological Sciences, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701 Republic of Korea
                [ ]College of Pharmacy, Chungbuk National University, Cheongju, 361-763 Republic of Korea
                Article
                652
                10.1186/s12906-015-0652-1
                4411748
                25898017
                706028b4-f903-44fe-b35e-2a1eff29e976
                © Lee et al.; licensee BioMed Central. 2015

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 27 December 2013
                : 15 April 2015
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2015

                Complementary & Alternative medicine
                fructus mume,permanent bilateral common carotid artery occlusion,inflammation,white matter,hippocampus

                Comments

                Comment on this article