43
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Nanotherapy for Cancer: Targeting and Multifunctionality in the Future of Cancer Therapies

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cancer continues to be a prevalent and lethal disease, despite advances in tumor biology research and chemotherapy development. Major obstacles in cancer treatment arise from tumor heterogeneity, drug resistance, and systemic toxicities. Nanoscale delivery systems, or nanotherapies, are increasing in importance as vehicles for antineoplastic agents because of their potential for targeting and multifunctionality. We discuss the current field of cancer therapy and potential strategies for addressing obstacles in cancer treatment with nanotherapies. Specifically, we review the strategies for rationally designing nanoparticles for targeted, multimodal delivery of therapeutic agents.

          Related collections

          Most cited references112

          • Record: found
          • Abstract: found
          • Article: not found

          Efficient In Vivo Genome Editing Using RNA-Guided Nucleases

          Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems have evolved in bacteria and archaea as a defense mechanism to silence foreign nucleic acids of viruses and plasmids. Recent work has shown that bacterial type II CRISPR systems can be adapted to create guide RNAs (gRNAs) capable of directing site-specific DNA cleavage by the Cas9 nuclease in vitro. Here we show that this system can function in vivo to induce targeted genetic modifications in zebrafish embryos with efficiencies comparable to those obtained using ZFNs and TALENs for the same genes. RNA-guided nucleases robustly enabled genome editing at 9 of 11 different sites tested, including two for which TALENs previously failed to induce alterations. These results demonstrate that programmable CRISPR/Cas systems provide a simple, rapid, and highly scalable method for altering genes in vivo, opening the door to using RNA-guided nucleases for genome editing in a wide range of organisms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors.

            A generalized method for analyzing the effects of multiple drugs and for determining summation, synergism and antagonism has been proposed. The derived, generalized equations are based on kinetic principles. The method is relatively simple and is not limited by whether the dose-effect relationships are hyperbolic or sigmoidal, whether the effects of the drugs are mutually exclusive or nonexclusive, whether the ligand interactions are competitive, noncompetitive or uncompetitive, whether the drugs are agonists or antagonists, or the number of drugs involved. The equations for the two most widely used methods for analyzing synergism, antagonism and summation of effects of multiple drugs, the isobologram and fractional product concepts, have been derived and been shown to have limitations in their applications. These two methods cannot be used indiscriminately. The equations underlying these two methods can be derived from a more generalized equation previously developed by us (59). It can be shown that the isobologram is valid only for drugs whose effects are mutually exclusive, whereas the fractional product method is valid only for mutually nonexclusive drugs which have hyperbolic dose-effect curves. Furthermore, in the isobol method, it is laborious to find proper combinations of drugs that would produce an iso-effective curve, and the fractional product method tends to give indication of synergism, since it underestimates the summation of the effect of mutually nonexclusive drugs that have sigmoidal dose-effect curves. The method described herein is devoid of these deficiencies and limitations. The simplified experimental design proposed for multiple drug-effect analysis has the following advantages: It provides a simple diagnostic plot (i.e., the median-effect plot) for evaluating the applicability of the data, and provides parameters that can be directly used to obtain a general equation for the dose-effect relation; the analysis which involves logarithmic conversion and linear regression can be readily carried out with a simple programmable electronic calculator and does not require special graph paper or tables; and the simplicity of the equation allows flexibility of application and the use of a minimum number of data points. This method has been used to analyze experimental data obtained from enzymatic, cellular and animal systems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Knocking down barriers: advances in siRNA delivery

              Key Points RNA interference (RNAi) is a fundamental pathway in eukaryotic cells by which sequence-specific small interfering RNA (siRNA) is able to silence genes through the destruction of complementary mRNA. RNAi is an important therapeutic tool that can be used to silence aberrant endogenous genes or to knockdown genes essential to the proliferation of infectious organisms. Delivery remains the central challenge to the therapeutic application of RNAi technology. Before siRNA can take effect in the cytoplasm of a target cell, it must be transported through the body to the target site without undergoing clearance or degradation. Currently, the most effective synthetic, non-viral delivery agents of siRNA are lipids, lipid-like materials and polymers. Various cationic agents including stable nucleic acid–lipid particles, lipidoids, cyclodextrin polymers and polyethyleneimine polymers have been used to achieve the successful systemic delivery of siRNA in mammals without inducing significant toxicity. Direct conjugation of delivery agents to siRNA can facilitate delivery. For example, cholesterol-modified siRNA enables targeting to the liver. RNAi therapeutics have progressed to the clinic, where studies are being conducted to determine siRNA efficacy in treating several diseases, including age-related macular degeneration and respiratory syncytial virus. Moving forward, it will be important to pay close attention to the potential nonspecific immunostimulatory effects of siRNA. Modifications to siRNA can be used to minimize stimulation of the immune system, and an increased emphasis must be placed on performing proper controls to ensure that therapeutic effects are sequence-specific.
                Bookmark

                Author and article information

                Journal
                ACS Biomater Sci Eng
                ACS Biomater Sci Eng
                ab
                abseba
                ACS Biomaterials Science & Engineering
                American Chemical Society
                2373-9878
                2373-9878
                13 January 2015
                09 February 2015
                : 1
                : 2
                : 64-78
                Affiliations
                [1]Department of Biomedical Engineering, Yale University , 55 Prospect Street, MEC 414, New Haven, Connecticut 06511, United States
                Author notes
                Article
                10.1021/ab500084g
                4426346
                25984571
                70609ba8-6f18-49d5-81f8-108682632bdc
                Copyright © 2015 American Chemical Society

                This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.

                History
                : 28 October 2014
                : 13 January 2015
                Funding
                National Institutes of Health, United States
                Categories
                Review
                Custom metadata
                ab500084g
                ab-2014-00084g

                nanoparticle,gene delivery,drug delivery,cancer therapy
                nanoparticle, gene delivery, drug delivery, cancer therapy

                Comments

                Comment on this article