29
views
0
recommends
+1 Recommend
2 collections
    0
    shares

      The APC waiver has been extended to also apply to manuscripts submitted until March 31, 2024.

      To submit to the journal, please click here.

      • Record: found
      • Abstract: found
      • Article: found

      Adenovirus-triggered innate signalling pathways

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Adenoviruses are important infectious agents and also emerging vectors in different biomedical applications. These viruses elicit a strong innate and adaptive immune response, which influences both the course of disease and the success of the applied vectors. Several Toll-like Receptor (TLR)-dependent and -independent mechanisms contribute to these responses. Understanding of the involved viral and cellular factors is crucial for the treatment of various adenovirus diseases and the optimal design of adenovirus vector applications. Here we summarize our current understanding of the complex nature of adenovirus-induced innate immune mechanisms.

          Related collections

          Most cited references96

          • Record: found
          • Abstract: found
          • Article: not found

          Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5.

          A complementary DNA clone has been isolated that encodes a coxsackievirus and adenovirus receptor (CAR). When transfected with CAR complementary DNA, nonpermissive hamster cells became susceptible to coxsackie B virus attachment and infection. Furthermore, consistent with previous studies demonstrating that adenovirus infection depends on attachment of a viral fiber to the target cell, CAR-transfected hamster cells bound adenovirus in a fiber-dependent fashion and showed a 100-fold increase in susceptibility to virus-mediated gene transfer. Identification of CAR as a receptor for these two unrelated and structurally distinct viral pathogens is important for understanding viral pathogenesis and has implications for therapeutic gene delivery with adenovirus vectors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus.

            The innate immune system contributes to the earliest phase of the host defense against foreign organisms and has both soluble and cellular pattern recognition receptors for microbial products. Two important members of this receptor group, CD14 and the Toll-like receptor (TLR) pattern recognition receptors, are essential for the innate immune response to components of Gram-negative and Gram-positive bacteria, mycobacteria, spirochetes and yeast. We now find that these receptors function in an antiviral response as well. The innate immune response to the fusion protein of an important respiratory pathogen of humans, respiratory syncytial virus (RSV), was mediated by TLR4 and CD14. RSV persisted longer in the lungs of infected TLR4-deficient mice compared to normal mice. Thus, a common receptor activation pathway can initiate innate immune responses to both bacterial and viral pathogens.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              CD46 is a cellular receptor for group B adenoviruses.

              Group B adenoviruses, a subgenus of human Adenoviridae, are associated with a variety of often-fatal illnesses in immunocompromised individuals, including bone marrow transplant recipients and cancer and AIDS patients. Recently, group B adenovirus derivatives have gained interest as attractive gene therapy vectors because they can transduce target tissues, such as hematopoietic stem cells, dendritic cells and malignant tumor cells, that are refractory to infection by commonly used adenoviral vectors. Whereas many adenoviruses infect cells through the coxsackievirus and adenovirus receptor (CAR), group B adenoviruses use an alternate, as-yet-unidentified cellular attachment receptor. Using mass spectrometric analysis of proteins interacting with a group B fiber, we identified human CD46 as a cellular attachment receptor for most group B adenoviruses. We show that ectopic expression of human CD46 rendered nonhuman cells susceptible to infection with group B viruses in vitro and in vivo. In addition, both siRNA-mediated knockdown of CD46 and a soluble form of CD46 blocked infection of human cell lines and primary human cells. The discovery that group B adenoviruses use CD46, a ubiquitously expressed complement regulatory protein, as a cellular attachment receptor elucidates the diverse clinical manifestation of group B virus infections, and bears directly on the application of these vectors for gene therapy.
                Bookmark

                Author and article information

                Journal
                1886
                122234
                European Journal of Microbiology and Immunology
                EuJMI
                Akadémiai Kiadó, co-published with Springer Science+Business Media B.V., Formerly Kluwer Academic Publishers B.V.
                2062-509X
                2062-8633
                1 December 2011
                : 1
                : 4
                : 279-288
                Affiliations
                [ 1 ] Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
                [ 2 ] Peninsula College of Medicine and Dentistry, Plymouth, Truro, UK
                [ 3 ] Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
                [ 4 ] Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108, Freiburg, Germany
                Author notes
                [* ] +49-761-5108 412, +49-761-5108 403, fejer@ 123456immunbio.mpg.de
                Article
                3
                10.1556/eujmi.1.2011.4.3
                3918130
                24516734
                7098f756-6789-4aab-ad20-f5dcb3b9e01a
                History
                : 11 October 2011
                : 15 October 2011

                Medicine,Immunology,Health & Social care,Microbiology & Virology,Infectious disease & Microbiology
                viral entry,IRF7,adenovirus,IL-1,type-I interferons,Toll-like receptors,innate response,endosomal escape

                Comments

                Comment on this article