24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ultrafast endocytosis at Caenorhabditis elegans neuromuscular junctions

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Synaptic vesicles can be released at extremely high rates, which places an extraordinary demand on the recycling machinery. Previous ultrastructural studies of vesicle recycling were conducted in dissected preparations using an intense stimulation to maximize the probability of release. Here, a single light stimulus was applied to motor neurons in intact Caenorhabditis elegans nematodes expressing channelrhodopsin, and the animals rapidly frozen. We found that docked vesicles fuse along a broad active zone in response to a single stimulus, and are replenished with a time constant of about 2 s. Endocytosis occurs within 50 ms adjacent to the dense projection and after 1 s adjacent to adherens junctions. These studies suggest that synaptic vesicle endocytosis may occur on a millisecond time scale following a single physiological stimulus in the intact nervous system and is unlikely to conform to current models of endocytosis.

          DOI: http://dx.doi.org/10.7554/eLife.00723.001

          eLife digest

          Neurons communicate with one another at junctions called synapses. When an electrical signal travels along a neuron and arrives at a synapse, vesicles filled with small neurotransmitter molecules fuse with the cell membrane and release the neurotransmitter. These chemicals rapidly bind to receptors on the downstream neuron that induce an electrical response in that cell.

          Vesicles can be consumed at prodigious rates, up to 500 a second, so the cell must recover the membrane rapidly and regenerate more vesicles filled with neurotransmitter. Experiments in the 1970s and 1980s suggested that when vesicles empty their contents into the synapse, they fuse completely with the membrane and are lost. To recover the membrane, the cell forms ‘pits’, by means of a coat protein called clathrin, which then bud off into the cell as new vesicles. It takes roughly 15–20 s for vesicles to be recycled in this way. By contrast, synapses with very high firing rates are thought to recycle vesicles through a faster process known as ‘kiss and run’, in which vesicles are not fully integrated into the membrane, but instead fuse transiently with it to form a reversible pore within about a second.

          However, these studies triggered vesicle release using conditions that are unlikely to occur naturally inside cells. Now, Watanabe et al. have used optogenetics to study vesicle recycling in response to single stimuli at the synapse between neurons and muscles in an intact living animal, the nematode C. elegans. The worms had been genetically modified to express a light-sensitive ion channel called channelrhodopsin in their motor neurons. Watanabe et al. used a single pulse of light to stimulate vesicle release, and then rapidly froze the worms before studying their synapses with electron microscopy.

          They found that vesicle recycling occurred at the edges of the synapse or at a specialized structure in the middle of the synapse. Vesicle recycling took less than 50 ms—much faster than anything previously observed. This ultrafast recycling is unlikely to occur via ‘kiss and run’ since recycling occurred at sites lateral to the sites of fusion and because the recycled vesicles were larger than the originals, implying that they had not simply re-formed after a brief fusion event.

          By using physiologically relevant stimuli in an intact animal, Watanabe et al. reveal that vesicles can be recycled at synapses much more rapidly than previously thought, suggesting that our current models of this process may need to be reassessed.

          DOI: http://dx.doi.org/10.7554/eLife.00723.002

          Related collections

          Most cited references76

          • Record: found
          • Abstract: found
          • Article: not found

          Single-copy insertion of transgenes in Caenorhabditis elegans.

          At present, transgenes in Caenorhabditis elegans are generated by injecting DNA into the germline. The DNA assembles into a semistable extrachromosomal array composed of many copies of injected DNA. These transgenes are typically overexpressed in somatic cells and silenced in the germline. We have developed a method that inserts a single copy of a transgene into a defined site. Mobilization of a Mos1 transposon generates a double-strand break in noncoding DNA. The break is repaired by copying DNA from an extrachromosomal template into the chromosomal site. Homozygous single-copy insertions can be obtained in less than 2 weeks by injecting approximately 20 worms. We have successfully inserted transgenes as long as 9 kb and verified that single copies are inserted at the targeted site. Single-copy transgenes are expressed at endogenous levels and can be expressed in the female and male germlines.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Multiple roles of calcium ions in the regulation of neurotransmitter release.

            The intracellular calcium concentration ([Ca(2+)]) has important roles in the triggering of neurotransmitter release and the regulation of short-term plasticity (STP). Transmitter release is initiated by quite high concentrations within microdomains, while short-term facilitation is strongly influenced by the global buildup of "residual calcium." A global rise in [Ca(2+)] also accelerates the recruitment of release-ready vesicles, thereby controlling the degree of short-term depression (STD) during sustained activity, as well as the recovery of the vesicle pool in periods of rest. We survey data that lead us to propose two distinct roles of [Ca(2+)] in vesicle recruitment: one accelerating "molecular priming" (vesicle docking and the buildup of a release machinery), the other promoting the tight coupling between releasable vesicles and Ca(2+) channels. Such coupling is essential for rendering vesicles sensitive to short [Ca(2+)] transients, generated during action potentials.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Synaptic vesicle pools.

              Communication between cells reaches its highest degree of specialization at chemical synapses. Some synapses talk in a 'whisper'; others 'shout'. The 'louder' the synapse, the more synaptic vesicles are needed to maintain effective transmission, ranging from a few hundred (whisperers) to nearly a million (shouters). These vesicles reside in different 'pools', which have been given a bewildering array of names. In this review, we focus on five tissue preparations in which synaptic vesicle pools have been identified and thoroughly characterized. We argue that, in each preparation, each vesicle can be assigned to one of three distinct pools.
                Bookmark

                Author and article information

                Contributors
                Role: Reviewing editor
                Journal
                eLife
                Elife
                eLife
                eLife
                eLife
                eLife Sciences Publications, Ltd
                2050-084X
                03 September 2013
                2013
                : 2
                : e00723
                Affiliations
                [1 ]Department of Biology, Howard Hughes Medical Institute, University of Utah , Salt Lake City, United States
                Brandeis University , United States
                Brandeis University , United States
                Author notes
                [* ]For correspondence: jorgensen@ 123456biology.utah.edu
                Article
                00723
                10.7554/eLife.00723
                3762212
                24015355
                70ac33c6-4f3b-48d5-b47c-31e8c0727a25
                Copyright © 2013, Watanabe et al

                This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

                History
                : 08 March 2013
                : 12 July 2013
                Funding
                Funded by: National Institutes of Health
                Award ID: NS034307
                Award Recipient :
                Funded by: National Science Foundation
                Award ID: 0920069
                Award Recipient :
                Funded by: Howard Hughes Medical Institute
                Award Recipient :
                Funded by: Marine Biological Laboratory (The Dart Scholars Program)
                Award Recipient :
                The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
                Categories
                Research Article
                Neuroscience
                Custom metadata
                1.0
                Optogenetics has revealed that synaptic vesicles can be recycled extremely rapidly in nematodes, indicating that existing models for how synapses 'reload' may need to be revised.

                Life sciences
                synaptic vesicle endocytosis,optogenetics,time-resolved electron microscopy,high-pressure freezing,synaptic vesicle exocytosis,active zone,c. elegans

                Comments

                Comment on this article