In vivo fluorescence imaging, using confocal or multiphoton microscopes, provides a powerful method to analyze kidney function in experimental animals. In this review, the preparation used for physiological studies in rats is described. A variety of fluorescent probes are available to study glomerular permeability, renal blood flow, peritubular capillary permeability, cell ion concentrations, tubule transport properties, and the functional status of renal cells. We have recently used micropuncture techniques and an adenovirus vector to accomplish gene transfer into kidney tubule and endothelial cells; this new methodology will allow the dynamic study of fluorescently-labeled proteins. Two examples of the use of two-photon fluorescence microscopy to study renal pathophysiology, namely polycystic kidney disease and renal ischemia, are presented. Software is available to quantify data collected from in vivo imaging experiments and to construct 3-dimensional images of renal structures. Two-photon or confocal microscopy offers many opportunities for a better understanding of kidney function in health and disease.
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.