2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Coexpression of Glucagon-Like Peptide-1 (GLP-1) Receptor, Vasopressin, and Oxytocin mRNAs in Neurons of the Rat Hypothalamic Supraoptic and Paraventricular Nuclei : Effect of GLP-1 (7-36) Amide on Vasopressin and Oxytocin Release

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study was designed to gain better insight into the relationship between glucagon-like peptide-1 (GLP-1) (7-36) amide and vasopressin (AVP) and oxytocin (OX). In situ hybridization histochemistry revealed colocalization of the mRNAs for GLP-1 receptor, AVP, and OX in neurons of the hypothalamic supraoptic and paraventricular nuclei. To determine whether GLP-1(7-36)amide alters AVP and/or OX release, both in vivo and in vitro experimental study designs were used. In vivo, intravenous administration of 1 microg of GLP-1(7-36)amide into the jugular vein significantly decreased plasma AVP and OX concentrations. In vitro incubation of the neurohypophysis with either 0.1 or 1 microg of GLP-1(7-36)amide did not modify the release of AVP. However, addition of 1 microg of GLP-1(7-36)amide to the incubation medium increased slightly the secretion of OX. The coexpression of GLP-1 receptor and AVP mRNAs in hypothalamic supraoptic and paraventricular nuclei gives further support to the already reported central effects of GLP-1 (7-36)amide on AVP. Our findings also suggest a dual secretory response of AVP and OX to the effect of GLP-1 (7-36)amide, which most likely is related to the amount and/or the route of peptide administration.

          Related collections

          Most cited references 24

          • Record: found
          • Abstract: found
          • Article: not found

          Expression cloning of the pancreatic beta cell receptor for the gluco-incretin hormone glucagon-like peptide 1.

           B Thorens (1992)
          Glucagon-like peptide 1 (GLP-1) is a hormone derived from the preproglucagon molecule and is secreted by intestinal L cells. It is the most potent stimulator of glucose-induced insulin secretion and also suppresses in vivo acid secretion by gastric glands. A cDNA for the GLP-1 receptor was isolated by transient expression of a rat pancreatic islet cDNA library into COS cells; this was followed by binding of radiolabeled GLP-1 and screening by photographic emulsion autoradiography. The receptor transfected into COS cells binds GLP-1 with high affinity and is coupled to activation of adenylate cyclase. The receptor binds specifically GLP-1 and does not bind peptides of related structure and similar function, such as glucagon, gastric inhibitory peptide, vasoactive intestinal peptide, or secretin. The receptor is 463 amino acids long and contains seven transmembrane domains. Sequence homology is found only with the receptors for secretin, calcitonin, and parathyroid hormone, which form a newly characterized family of G-coupled receptors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Induction of intestinal epithelial proliferation by glucagon-like peptide 2.

            Injury, inflammation, or resection of the small intestine results in severe compromise of intestinal function. Nevertheless, therapeutic strategies for enhancing growth and repair of the intestinal mucosal epithelium are currently not available. We demonstrate that nude mice bearing subcutaneous proglucagon-producing tumors exhibit marked proliferation of the small intestinal epithelium. The factor responsible for inducing intestinal proliferation was identified as glucagon-like peptide 2 (GLP-2), a 33-aa peptide with no previously ascribed biological function. GLP-2 stimulated crypt cell proliferation and consistently induced a marked increase in bowel weight and villus growth of the jejunum and ileum that was evident within 4 days after initiation of GLP-2 administration. These observations define a novel biological role for GLP-2 as an intestinal-derived peptide stimulator of small bowel epithelial proliferation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cloning and functional expression of the human islet GLP-1 receptor. Demonstration that exendin-4 is an agonist and exendin-(9-39) an antagonist of the receptor.

               S. Deng,  L Buhler,  P Morel (1993)
              A complementary DNA for a glucagon-like peptide-1 receptor was isolated from a human pancreatic islet cDNA library. The isolated clone encoded a protein with 90% identity to the rat receptor. In stably transfected fibroblasts, the receptor bound [125I]GLP-1 with high affinity (Kd = 0.5 nM) and was coupled to adenylate cyclase as detected by a GLP-1-dependent increase in cAMP production (EC50 = 93 pM). Two peptides from the venom of the lizard Heloderma suspectum, exendin-4 and exendin-(9-39), displayed similar ligand binding affinities to the human GLP-1 receptor. Whereas exendin-4 acted as an agonist of the receptor, inducing cAMP formation, exendin-(9-39) was an antagonist of the receptor, inhibiting GLP-1-induced cAMP production. Because GLP-1 has been proposed as a potential agent for treatment of NIDDM, our present data will contribute to the characterization of the receptor binding site and the development of new agonists of this receptor.
                Bookmark

                Author and article information

                Journal
                Journal of Neurochemistry
                Wiley
                00223042
                January 1999
                January 1999
                January 18 2002
                : 72
                : 1
                : 10-16
                Article
                10.1046/j.1471-4159.1999.0720010.x
                9886049
                © 2002

                Comments

                Comment on this article