15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Proteins evolve on the edge of supramolecular self-assembly

      , , ,
      Nature
      Springer Nature

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The self-association of proteins into symmetric complexes is ubiquitous in all kingdoms of life. Symmetric complexes possess unique geometric and functional properties, but their internal symmetry can pose a risk. In sickle-cell disease, the symmetry of haemoglobin exacerbates the effect of a mutation, triggering assembly into harmful fibrils. Here we examine the universality of this mechanism and its relation to protein structure geometry. We introduced point mutations solely designed to increase surface hydrophobicity among 12 distinct symmetric complexes from Escherichia coli. Notably, all responded by forming supramolecular assemblies in vitro, as well as in vivo upon heterologous expression in Saccharomyces cerevisiae. Remarkably, in four cases, micrometre-long fibrils formed in vivo in response to a single point mutation. Biophysical measurements and electron microscopy revealed that mutants self-assembled in their folded states and so were not amyloid-like. Structural examination of 73 mutants identified supramolecular assembly hot spots predictable by geometry. A subsequent structural analysis of 7,471 symmetric complexes showed that geometric hot spots were buffered chemically by hydrophilic residues, suggesting a mechanism preventing mis-assembly of these regions. Thus, point mutations can frequently trigger folded proteins to self-assemble into higher-order structures. This potential is counterbalanced by negative selection and can be exploited to design nanomaterials in living cells.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          NIH Image to ImageJ: 25 years of image analysis.

          For the past 25 years NIH Image and ImageJ software have been pioneers as open tools for the analysis of scientific images. We discuss the origins, challenges and solutions of these two programs, and how their history can serve to advise and inform other software projects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds.

            An expression system for Saccharomyces cerevisiae (Sc) has been developed which, depending on the chosen vector, allows the constitutive expression of proteins at different levels over a range of three orders of magnitude and in different genetic backgrounds. The expression system is comprised of cassettes composed of a weak CYC1 promoter, the ADH promoter or the stronger TEF and GPD promoters, flanked by a cloning array and the CYC1 terminator. The multiple cloning array based on pBIISK (Stratagene) provides six to nine unique restriction sites, which facilitates the cloning of genes and allows for the directed cloning of cDNAs by the widely used ZAP system (Stratagene). Expression cassettes were placed into both the centromeric and 2 mu plasmids of the pRS series [Sikorski and Hieter, Genetics 122 (1989) 19-27; Christianson et al., Gene 110 (1992) 119-122] containing HIS3, TRP1, LEU2 or URA3 markers. The 32 expression vectors created by this strategy provide a powerful tool for the convenient cloning and the controlled expression of genes or cDNAs in nearly every genetic background of the currently used Sc strains.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Epitope tagging of yeast genes using a PCR-based strategy: more tags and improved practical routines.

              Epitope tagging of proteins as a strategy for the analysis of function, interactions and the subcellular distribution of proteins has become widely used. In the yeast Saccharomyces cerevisiae, molecular biological techniques have been developed that use a simple PCR-based strategy to introduce epitope tags to chromosomal loci (Wach et al., 1994). To further employ the power of this strategy, a variety of novel tags was constructed. These tags were combined with different selectable marker genes, resulting in PCR amplificable modules. Only one set of primers is required for the amplification of any module. Furthermore, convenient laboratory techniques are described that facilitate the genetic manipulations of yeast strains, as well as the analysis of the epitope-tagged proteins. Copyright 1999 John Wiley & Sons, Ltd.
                Bookmark

                Author and article information

                Journal
                Nature
                Nature
                Springer Nature
                0028-0836
                1476-4687
                August 2 2017
                August 2 2017
                :
                :
                Article
                10.1038/nature23320
                28783726
                70b7c656-9b54-43b9-80d0-a3b8e32da5ac
                © 2017
                History

                Comments

                Comment on this article