10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The bacterial epigenome

      ,
      Nature Reviews Microbiology
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In all domains of life, genomes contain epigenetic information superimposed over the nucleotide sequence. Epigenetic signals control DNA-protein interactions and can cause phenotypic change in the absence of mutation. A nearly universal mechanism of epigenetic signalling is DNA methylation. In bacteria, DNA methylation has roles in genome defence, chromosome replication and segregation, nucleoid organization, cell cycle control, DNA repair and regulation of transcription. In many bacterial species, DNA methylation controls reversible switching (phase variation) of gene expression, a phenomenon that generates phenotypic cell variants. The formation of epigenetic lineages enables the adaptation of bacterial populations to harsh or changing environments and modulates the interaction of pathogens with their eukaryotic hosts.

          Related collections

          Most cited references137

          • Record: found
          • Abstract: found
          • Article: not found

          Phenotypic diversity, population growth, and information in fluctuating environments.

          Organisms in fluctuating environments must constantly adapt their behavior to survive. In clonal populations, this may be achieved through sensing followed by response or through the generation of diversity by stochastic phenotype switching. Here we show that stochastic switching can be favored over sensing when the environment changes infrequently. The optimal switching rates then mimic the statistics of environmental changes. We derive a relation between the long-term growth rate of the organism and the information available about its fluctuating environment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Continuous base identification for single-molecule nanopore DNA sequencing.

            A single-molecule method for sequencing DNA that does not require fluorescent labelling could reduce costs and increase sequencing speeds. An exonuclease enzyme might be used to cleave individual nucleotide molecules from the DNA, and when coupled to an appropriate detection system, these nucleotides could be identified in the correct order. Here, we show that a protein nanopore with a covalently attached adapter molecule can continuously identify unlabelled nucleoside 5'-monophosphate molecules with accuracies averaging 99.8%. Methylated cytosine can also be distinguished from the four standard DNA bases: guanine, adenine, thymine and cytosine. The operating conditions are compatible with the exonuclease, and the kinetic data show that the nucleotides have a high probability of translocation through the nanopore and, therefore, of not being registered twice. This highly accurate tool is suitable for integration into a system for sequencing nucleic acids and for analysing epigenetic modifications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bistability, epigenetics, and bet-hedging in bacteria.

              Clonal populations of microbial cells often show a high degree of phenotypic variability under homogeneous conditions. Stochastic fluctuations in the cellular components that determine cellular states can cause two distinct subpopulations, a property called bistability. Phenotypic heterogeneity can be readily obtained by interlinking multiple gene regulatory pathways, effectively resulting in a genetic logic-AND gate. Although switching between states can occur within the cells' lifetime, cells can also pass their cellular state over to the next generation by a mechanism known as epigenetic inheritance and thus perpetuate the phenotypic state. Importantly, heterogeneous populations can demonstrate increased fitness compared with homogeneous populations. This suggests that microbial cells employ bet-hedging strategies to maximize survival. Here, we discuss the possible roles of interlinked bistable networks, epigenetic inheritance, and bet-hedging in bacteria.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Microbiology
                Nat Rev Microbiol
                Springer Science and Business Media LLC
                1740-1526
                1740-1534
                November 14 2019
                Article
                10.1038/s41579-019-0286-2
                31728064
                70dc6817-fb8d-46ac-98f4-fccc22d3c742
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article