4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Reliable and valid robot-assisted assessments of hand proprioceptive, motor and sensorimotor impairments after stroke

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Neurological injuries such as stroke often differentially impair hand motor and somatosensory function, as well as the interplay between the two, which leads to limitations in performing activities of daily living. However, it is challenging to identify which specific aspects of sensorimotor function are impaired based on conventional clinical assessments that are often insensitive and subjective. In this work we propose and validate a set of robot-assisted assessments aiming at disentangling hand proprioceptive from motor impairments, and capturing their interrelation (sensorimotor impairments).

          Methods

          A battery of five complementary assessment tasks was implemented on a one degree-of-freedom end-effector robotic platform acting on the index finger metacarpophalangeal joint. Specifically, proprioceptive impairments were assessed using a position matching paradigm. Fast target reaching, range of motion and maximum fingertip force tasks characterized motor function deficits. Finally, sensorimotor impairments were assessed using a dexterous trajectory following task. Clinical feasibility (duration), reliability (intra-class correlation coefficient ICC, smallest real difference SRD) and validity (Kruskal-Wallis test, Spearman correlations \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho$$\end{document} with Fugl-Meyer Upper Limb Motor Assessment, kinesthetic Up-Down Test, Box & Block Test) of robotic tasks were evaluated with 36 sub-acute stroke subjects and 31 age-matched neurologically intact controls.

          Results

          Eighty-three percent of stroke survivors with varied impairment severity (mild to severe) could complete all robotic tasks (duration: <15 min per tested hand). Further, the study demonstrated good to excellent reliability of the robotic tasks in the stroke population (ICC>0.7, SRD<30%), as well as discriminant validity, as indicated by significant differences ( p-value<0.001) between stroke and control subjects. Concurrent validity was shown through moderate to strong correlations ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho$$\end{document} =0.4-0.8) between robotic outcome measures and clinical scales. Finally, robotic tasks targeting different deficits (motor, sensory) were not strongly correlated with each other ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho \le$$\end{document} 0.32, p-value>0.1), thereby presenting complementary information about a patient’s impairment profile.

          Conclusions

          The proposed robot-assisted assessments provide a clinically feasible, reliable, and valid approach to distinctly characterize impairments in hand proprioceptive and motor function, along with the interaction between the two. This opens new avenues to help unravel the contributions of unique aspects of sensorimotor function in post-stroke recovery, as well as to contribute to future developments towards personalized, assessment-driven therapies.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s12984-021-00904-5.

          Related collections

          Most cited references86

          • Record: found
          • Abstract: found
          • Article: not found

          A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research.

          Intraclass correlation coefficient (ICC) is a widely used reliability index in test-retest, intrarater, and interrater reliability analyses. This article introduces the basic concept of ICC in the content of reliability analysis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment.

            To develop a 10-minute cognitive screening tool (Montreal Cognitive Assessment, MoCA) to assist first-line physicians in detection of mild cognitive impairment (MCI), a clinical state that often progresses to dementia. Validation study. A community clinic and an academic center. Ninety-four patients meeting MCI clinical criteria supported by psychometric measures, 93 patients with mild Alzheimer's disease (AD) (Mini-Mental State Examination (MMSE) score > or =17), and 90 healthy elderly controls (NC). The MoCA and MMSE were administered to all participants, and sensitivity and specificity of both measures were assessed for detection of MCI and mild AD. Using a cutoff score 26, the MMSE had a sensitivity of 18% to detect MCI, whereas the MoCA detected 90% of MCI subjects. In the mild AD group, the MMSE had a sensitivity of 78%, whereas the MoCA detected 100%. Specificity was excellent for both MMSE and MoCA (100% and 87%, respectively). MCI as an entity is evolving and somewhat controversial. The MoCA is a brief cognitive screening tool with high sensitivity and specificity for detecting MCI as currently conceptualized in patients performing in the normal range on the MMSE.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              STATISTICAL METHODS FOR ASSESSING AGREEMENT BETWEEN TWO METHODS OF CLINICAL MEASUREMENT

                Bookmark

                Author and article information

                Contributors
                relab.publications@hest.ethz.ch
                christoph.kanzler@sec.ethz.ch
                ljordan@student.ethz.ch
                c.salzmann@kliniken-schmieder.de
                j.liepert@kliniken-schmieder.de
                olivier.lambercy@hest.ethz.ch
                roger.gassert@hest.ethz.ch
                Journal
                J Neuroeng Rehabil
                J Neuroeng Rehabil
                Journal of NeuroEngineering and Rehabilitation
                BioMed Central (London )
                1743-0003
                16 July 2021
                16 July 2021
                2021
                : 18
                : 115
                Affiliations
                [1 ]GRID grid.5801.c, ISNI 0000 0001 2156 2780, Rehabilitation Engineering Laboratory, Institute of Robotics and Intelligent Systems, Department of Health Sciences and Technology, , ETH Zurich, ; Zurich, Switzerland
                [2 ]GRID grid.461718.d, ISNI 0000 0004 0557 7415, Kliniken Schmieder Allensbach, ; Zum Tafelholz 8, 78476 Allensbach, Germany
                [3 ]GRID grid.454851.9, ISNI 0000 0004 0468 4884, Future Health Technologies, Singapore-ETH Centre, , Campus for Research Excellence And Technological Enterprise (CREATE), ; Singapore, Singapore
                Author information
                http://orcid.org/0000-0002-2280-7636
                Article
                904
                10.1186/s12984-021-00904-5
                8283922
                34271954
                70dfa989-02c7-44ad-8d5b-3a47210788d7
                © The Author(s) 2021

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 12 November 2020
                : 24 June 2021
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100001711, Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung;
                Award ID: 320030L_170163
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2021

                Neurosciences
                robot-assisted assessments,neurorehabilitation,stroke,recovery,somatosensation,proprioception,sensorimotor impairments,hand function

                Comments

                Comment on this article