5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      L-Carnitine: An Antioxidant Remedy for the Survival of Cardiomyocytes under Hyperglycemic Condition

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Metabolic alterations as hyperglycemia and inflammation induce myocardial molecular events enhancing oxidative stress and mitochondrial dysfunction. Those alterations are responsible for a progressive loss of cardiomyocytes, cardiac stem cells, and consequent cardiovascular complications. Currently, there are no effective pharmacological measures to protect the heart from these metabolic modifications, and the development of new therapeutic approaches, focused on improvement of the oxidative stress condition, is pivotal. The protective effects of levocarnitine (LC) in patients with ischemic heart disease are related to the attenuation of oxidative stress, but LC mechanisms have yet to be fully understood.

          Objective

          The aim of this work was to investigate LC's role in oxidative stress condition, on ROS production and mitochondrial detoxifying function in H9c2 rat cardiomyocytes during hyperglycemia.

          Methods

          H9c2 cells in the hyperglycemic state (25 mmol/L glucose) were exposed to 0.5 or 5 mM LC for 48 and 72 h: LC effects on signaling pathways involved in oxidative stress condition were studied by Western blot and immunofluorescence analysis. To evaluate ROS production, H9c2 cells were exposed to H 2O 2 after LC pretreatment.

          Results

          Our in vitro study indicates how LC supplementation might protect cardiomyocytes from oxidative stress-related damage, preventing ROS formation and activating antioxidant signaling pathways in hyperglycemic conditions. In particular, LC promotes STAT3 activation and significantly increases the expression of antioxidant protein SOD2. Hyperglycemic cardiac cells are characterized by impairment in mitochondrial dysfunction and the CaMKII signal: LC promotes CaMKII expression and activation and enhancement of AMPK protein synthesis. Our results suggest that LC might ameliorate metabolic aspects of hyperglycemic cardiac cells. Finally, LC doses herein used did not modify H9c2 growth rate and viability.

          Conclusions

          Our novel study demonstrates that LC improves the microenvironment damaged by oxidative stress (induced by hyperglycemia), thus proposing this nutraceutical compound as an adjuvant in diabetic cardiac regenerative medicine.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular and Cellular Mechanisms of Cardiovascular Disorders in Diabetes.

          The clinical correlations linking diabetes mellitus with accelerated atherosclerosis, cardiomyopathy, and increased post-myocardial infarction fatality rates are increasingly understood in mechanistic terms. The multiple mechanisms discussed in this review seem to share a common element: prolonged increases in reactive oxygen species (ROS) production in diabetic cardiovascular cells. Intracellular hyperglycemia causes excessive ROS production. This activates nuclear poly(ADP-ribose) polymerase, which inhibits GAPDH, shunting early glycolytic intermediates into pathogenic signaling pathways. ROS and poly(ADP-ribose) polymerase also reduce sirtuin, PGC-1α, and AMP-activated protein kinase activity. These changes cause decreased mitochondrial biogenesis, increased ROS production, and disturbed circadian clock synchronization of glucose and lipid metabolism. Excessive ROS production also facilitates nuclear transport of proatherogenic transcription factors, increases transcription of the neutrophil enzyme initiating NETosis, peptidylarginine deiminase 4, and activates the NOD-like receptor family, pyrin domain-containing 3 inflammasome. Insulin resistance causes excessive cardiomyocyte ROS production by increasing fatty acid flux and oxidation. This stimulates overexpression of the nuclear receptor PPARα and nuclear translocation of forkhead box O 1, which cause cardiomyopathy. ROS also shift the balance between mitochondrial fusion and fission in favor of increased fission, reducing the metabolic capacity and efficiency of the mitochondrial electron transport chain and ATP synthesis. Mitochondrial oxidative stress also plays a central role in angiotensin II-induced gap junction remodeling and arrhythmogenesis. ROS contribute to sudden death in diabetics after myocardial infarction by increasing post-translational protein modifications, which cause increased ryanodine receptor phosphorylation and downregulation of sarco-endoplasmic reticulum Ca(++)-ATPase transcription. Increased ROS also depress autonomic ganglion synaptic transmission by oxidizing the nAch receptor α3 subunit, potentially contributing to the increased risk of fatal cardiac arrhythmias associated with diabetic cardiac autonomic neuropathy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cell therapy for heart failure: a comprehensive overview of experimental and clinical studies, current challenges, and future directions.

            Despite significant therapeutic advances, the prognosis of patients with heart failure (HF) remains poor, and current therapeutic approaches are palliative in the sense that they do not address the underlying problem of the loss of cardiac tissue. Stem cell-based therapies have the potential to fundamentally transform the treatment of HF by achieving what would have been unthinkable only a few years ago-myocardial regeneration. For the first time since cardiac transplantation, a therapy is being developed to eliminate the underlying cause of HF, not just to achieve damage control. Since the initial report of cell therapy (skeletal myoblasts) in HF in 1998, research has proceeded at lightning speed, and numerous preclinical and clinical studies have been performed that support the ability of various stem cell populations to improve cardiac function and reduce infarct size in both ischemic and nonischemic cardiomyopathy. Nevertheless, we are still at the dawn of this therapeutic revolution. Many important issues (eg, mechanism(s) of action of stem cells, long-term engraftment, optimal cell type(s), and dose, route, and frequency of cell administration) remain to be resolved, and no cell therapy has been conclusively shown to be effective. The purpose of this article is to critically review the large body of work performed with respect to the use of stem/progenitor cells in HF, both at the experimental and clinical levels, and to discuss current controversies, unresolved issues, challenges, and future directions. The review focuses specifically on chronic HF; other settings (eg, acute myocardial infarction, refractory angina) are not discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hyperglycemia-induced oxidative stress and its role in diabetes mellitus related cardiovascular diseases.

              Diabetes mellitus is associated to an increased risk of cardiovascular diseases. Hyperglycemia is an important factor in cardiovascular damage, working through different mechanisms such as activation of protein kinase C, polyol and hexosamine pathways, advanced glycation end products production. All of these pathways, in association to hyperglycemia-induced mitochondrial dysfunction and endoplasmic reticulum stress, promote reactive oxygen species (ROS) accumulation that, in turn, promote cellular damage and contribute to the diabetic complications development and progression. ROS can directly damage lipids, proteins or DNA and modulate intracellular signaling pathways, such as mitogen activated protein kinases and redox sensitive transcription factors causing changes in protein expression and, therefore, irreversible oxidative modifications. Hyperglycemia-induced oxidative stress induces endothelial dysfunction that plays a central role in the pathogenesis of micro- and macro-vascular diseases. It may also increase pro-inflammatory and pro-coagulant factors expression, induce apoptosis and impair nitric oxide release. Oxidative stress induces several phenotypic alterations also in vascular smooth-muscle cell (VSMC). ROS is one of the factors that can promote both VSMC proliferation/migration in atherosclerotic lesions and VSMC apoptosis, which is potentially involved in atherosclerotic plaque instability and rupture. Currently, there are contrasting clinical evidences on the benefits of antioxidant therapies in the prevention/treatment of diabetic cardiovascular complications. Appropriate glycemic control, in which both hypoglycemic and hyperglycemic episodes are reduced, in association to the treatment of dyslipidemia, hypertension, kidney dysfunction and obesity, conditions which are also associated to ROS overproduction, can counteract oxidative stress and, therefore, both microvascular and macrovascular complications of diabetes mellitus.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Diabetes Res
                J Diabetes Res
                JDR
                Journal of Diabetes Research
                Hindawi
                2314-6745
                2314-6753
                2018
                9 December 2018
                : 2018
                : 4028297
                Affiliations
                1Metabolism Research Center, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
                2Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
                Author notes

                Guest Editor: Gaetano Santulli

                Author information
                http://orcid.org/0000-0003-1420-5405
                http://orcid.org/0000-0003-0304-1564
                http://orcid.org/0000-0003-3183-0552
                http://orcid.org/0000-0002-8663-4033
                Article
                10.1155/2018/4028297
                6304876
                70e98407-1fed-4977-9510-3e8f1251e5c1
                Copyright © 2018 Fernanda Vacante et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 19 July 2018
                : 13 September 2018
                : 11 October 2018
                Funding
                Funded by: Ministero della Salute
                Categories
                Research Article

                Comments

                Comment on this article