19
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The growing impact of air quality on lung-related illness: a narrative review

      review-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background and Objective

          Poor air quality can be harmful to human well-being. There are a variety of respiratory disorders associated with toxins present within the atmosphere, such as bronchitis and asthma, which eventually lead to heart or lung complications over time. Fine particles like particulate matter 2.5 (PM2.5) accumulate in the small airways of the lung. These irritants can cause epigenetic modifications in gene regulation, leading to changes responsible for both benign and malignant lung diseases. In this review we will discuss known associations between environmental factors and pulmonary complications, consider preventative measures and offer further areas for future investigation. This review presents a summary of the literature outlining the current work done on air quality and its effects on lung-related illnesses. We discuss regional differences in air quality and consider the causes, such as manufacturing, traffic density, increase in fuel usage and natural events. We further explore disparities based on geography, race, and other social determinants.

          Methods

          A comprehensive literature review was performed using keywords related to air quality, pollution and lung disease within the PubMed database as well as MEDLINE and Google Scholar.

          Key Content and Findings

          The Clean Air Act of 1970 marked an essential transition for air quality improvement. The legislation led to decreased emissions and control measures to address atmosphere contamination. Despite these actions, poor atmospheric conditions still persist today and have become an ongoing issue. These poor conditions affect individuals living in metropolitan areas more significantly than suburban or rural areas. Pollution from industrial operations and transportation vehicles have led to increased emission outputs recently. Climate change further aggravates air quality problems by raising pollutant and allergen concentrations. The detrimental consequences of poor air quality include increased incidence of disease processes like asthma, chronic obstructive pulmonary disease (COPD) and lung cancer. To keep up with the well-being of people globally, it is important that actions be taken to battle contamination in the climate so its impact on public health can be limited.

          Conclusions

          Poor air quality and recent worsening of industrial emissions have had a negative impact on lung-related illnesses. Future mitigation strategies should be taken to reduce pollution and treat diseases earlier in their course. Some of these strategies include more reliance on alternative energy sources, creation of mass transit systems and increased rates of recycling.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          Cancer statistics, 2022

          Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths in the United States and compiles the most recent data on population-based cancer occurrence and outcomes. Incidence data (through 2018) were collected by the Surveillance, Epidemiology, and End Results program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data (through 2019) were collected by the National Center for Health Statistics. In 2022, 1,918,030 new cancer cases and 609,360 cancer deaths are projected to occur in the United States, including approximately 350 deaths per day from lung cancer, the leading cause of cancer death. Incidence during 2014 through 2018 continued a slow increase for female breast cancer (by 0.5% annually) and remained stable for prostate cancer, despite a 4% to 6% annual increase for advanced disease since 2011. Consequently, the proportion of prostate cancer diagnosed at a distant stage increased from 3.9% to 8.2% over the past decade. In contrast, lung cancer incidence continued to decline steeply for advanced disease while rates for localized-stage increased suddenly by 4.5% annually, contributing to gains both in the proportion of localized-stage diagnoses (from 17% in 2004 to 28% in 2018) and 3-year relative survival (from 21% to 31%). Mortality patterns reflect incidence trends, with declines accelerating for lung cancer, slowing for breast cancer, and stabilizing for prostate cancer. In summary, progress has stagnated for breast and prostate cancers but strengthened for lung cancer, coinciding with changes in medical practice related to cancer screening and/or treatment. More targeted cancer control interventions and investment in improved early detection and treatment would facilitate reductions in cancer mortality.
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015

            Summary Background Exposure to ambient air pollution increases morbidity and mortality, and is a leading contributor to global disease burden. We explored spatial and temporal trends in mortality and burden of disease attributable to ambient air pollution from 1990 to 2015 at global, regional, and country levels. Methods We estimated global population-weighted mean concentrations of particle mass with aerodynamic diameter less than 2·5 μm (PM2·5) and ozone at an approximate 11 km × 11 km resolution with satellite-based estimates, chemical transport models, and ground-level measurements. Using integrated exposure–response functions for each cause of death, we estimated the relative risk of mortality from ischaemic heart disease, cerebrovascular disease, chronic obstructive pulmonary disease, lung cancer, and lower respiratory infections from epidemiological studies using non-linear exposure–response functions spanning the global range of exposure. Findings Ambient PM2·5 was the fifth-ranking mortality risk factor in 2015. Exposure to PM2·5 caused 4·2 million (95% uncertainty interval [UI] 3·7 million to 4·8 million) deaths and 103·1 million (90·8 million 115·1 million) disability-adjusted life-years (DALYs) in 2015, representing 7·6% of total global deaths and 4·2% of global DALYs, 59% of these in east and south Asia. Deaths attributable to ambient PM2·5 increased from 3·5 million (95% UI 3·0 million to 4·0 million) in 1990 to 4·2 million (3·7 million to 4·8 million) in 2015. Exposure to ozone caused an additional 254 000 (95% UI 97 000–422 000) deaths and a loss of 4·1 million (1·6 million to 6·8 million) DALYs from chronic obstructive pulmonary disease in 2015. Interpretation Ambient air pollution contributed substantially to the global burden of disease in 2015, which increased over the past 25 years, due to population ageing, changes in non-communicable disease rates, and increasing air pollution in low-income and middle-income countries. Modest reductions in burden will occur in the most polluted countries unless PM2·5 values are decreased substantially, but there is potential for substantial health benefits from exposure reduction. Funding Bill & Melinda Gates Foundation and Health Effects Institute.
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Environmental and Health Impacts of Air Pollution: A Review

              One of our era's greatest scourges is air pollution, on account not only of its impact on climate change but also its impact on public and individual health due to increasing morbidity and mortality. There are many pollutants that are major factors in disease in humans. Among them, Particulate Matter (PM), particles of variable but very small diameter, penetrate the respiratory system via inhalation, causing respiratory and cardiovascular diseases, reproductive and central nervous system dysfunctions, and cancer. Despite the fact that ozone in the stratosphere plays a protective role against ultraviolet irradiation, it is harmful when in high concentration at ground level, also affecting the respiratory and cardiovascular system. Furthermore, nitrogen oxide, sulfur dioxide, Volatile Organic Compounds (VOCs), dioxins, and polycyclic aromatic hydrocarbons (PAHs) are all considered air pollutants that are harmful to humans. Carbon monoxide can even provoke direct poisoning when breathed in at high levels. Heavy metals such as lead, when absorbed into the human body, can lead to direct poisoning or chronic intoxication, depending on exposure. Diseases occurring from the aforementioned substances include principally respiratory problems such as Chronic Obstructive Pulmonary Disease (COPD), asthma, bronchiolitis, and also lung cancer, cardiovascular events, central nervous system dysfunctions, and cutaneous diseases. Last but not least, climate change resulting from environmental pollution affects the geographical distribution of many infectious diseases, as do natural disasters. The only way to tackle this problem is through public awareness coupled with a multidisciplinary approach by scientific experts; national and international organizations must address the emergence of this threat and propose sustainable solutions.

                Author and article information

                Journal
                J Thorac Dis
                J Thorac Dis
                JTD
                Journal of Thoracic Disease
                AME Publishing Company
                2072-1439
                2077-6624
                14 August 2023
                28 September 2023
                : 15
                : 9
                : 5055-5063
                Affiliations
                [1 ]deptSchool of Medicine , Wayne State University , Detroit, MI, USA;
                [2 ]Department of Surgery, Henry Ford Health System , Detroit, MI, USA;
                [3 ]deptSchool of Medicine , University of Central Florida , Orlando, FL, USA
                Author notes

                Contributions: (I) Conception and design: P Behinaein, H Hutchings, IC Okereke; (II) Administrative support: IC Okereke; (III) Provision of study materials or patients: None; (IV) Collection and assembly of data: P Behinaein, T Knapp; (V) Data analysis and interpretation: All authors; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.

                Correspondence to: Ikenna C. Okereke, MD. Vice Chairman, Department of Surgery, System Director of Thoracic Surgery, Henry Ford Health System, 2799 W. Grand Blvd., Detroit, MI 48202, USA. Email: iokerek1@ 123456hfhs.org .
                Article
                jtd-15-09-5055
                10.21037/jtd-23-544
                10586990
                37868892
                70eaacf3-f518-42cb-97fd-5653c51568a3
                2023 Journal of Thoracic Disease. All rights reserved.

                Open Access Statement: This is an Open Access article distributed in accordance with the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0), which permits the non-commercial replication and distribution of the article with the strict proviso that no changes or edits are made and the original work is properly cited (including links to both the formal publication through the relevant DOI and the license). See: https://creativecommons.org/licenses/by-nc-nd/4.0.

                History
                : 02 April 2023
                : 28 July 2023
                Categories
                Review Article

                air quality,pollution,asthma,lung cancer
                air quality, pollution, asthma, lung cancer

                Comments

                Comment on this article

                Related Documents Log